OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 32, Iss. 21 — Jul. 20, 1993
  • pp: 4074–4087

Continuous wave dye-laser technique for simultaneous, spatially resolved measurements of temperature, pressure, and velocity of NO in an underexpanded free jet

Michael D. Di Rosa, Albert Y. Chang, and Ronald K. Hanson  »View Author Affiliations


Applied Optics, Vol. 32, Issue 21, pp. 4074-4087 (1993)
http://dx.doi.org/10.1364/AO.32.004074


View Full Text Article

Enhanced HTML    Acrobat PDF (2157 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Gas dynamic quantities within an underexpanded nitrogen free jet, seeded with 0.5% NO, were measured nonintrusively by using an intracavity-doubled, rapid-tuning, cw ring dye laser. The UV beam passed obliquely through the jet axis, and its frequency repetitively scanned across adjacent rotational lines in the NO gamma band near 225 nm at a rate of 4 kHz. Spatially resolved excitation scans were obtained by monitoring the induced broadband fluoresence. Modeling the Doppler-shifted excitation scans with Voigt profiles permitted simultaneous determinations of NO velocity, rotational temperature, and pressure. Zero Doppler shift was referenced to an absorption trace obtained across a static cell and recorded concurrently with the excitation scan. Typically, the measured and predicted axial distributions agreed within 10%. At high Mach numbers there was evidence of rotational freezing of NO.

© 1993 Optical Society of America

History
Original Manuscript: March 20, 1992
Published: July 20, 1993

Citation
Michael D. Di Rosa, Albert Y. Chang, and Ronald K. Hanson, "Continuous wave dye-laser technique for simultaneous, spatially resolved measurements of temperature, pressure, and velocity of NO in an underexpanded free jet," Appl. Opt. 32, 4074-4087 (1993)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-32-21-4074


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. C. Rea, R. K. Hanson, “Rapid extended range tuning of single-mode ring dye lasers,” Appl. Opt. 22, 518–520 (1983). [CrossRef] [PubMed]
  2. E. C. Rea, S. Salimian, R. K. Hanson, “Rapid-tuning frequency-doubled ring dye laser for high resolution absorption spectroscopy in shock-heated gases,” Appl. Opt. 23, 1691–1694 (1984). [CrossRef] [PubMed]
  3. E. C. Rea, A. Y. Chang, R. K. Hanson, “Shock-tube study of pressure broadening of the A2Σ+ − X2П(0, 0) band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117–127 (1986). [CrossRef]
  4. A. Y. Chang, E. C. Rea, R. K. Hanson, “Temperature measurements in shock tubes using a laser-based absorption technique,” Appl. Opt. 26, 885–891 (1987). [CrossRef] [PubMed]
  5. E. C. Rea, R. K. Hanson, “Rapid laser-wavelength modulation spectroscopy used as a fast temperature measurement technique in hydrocarbon combustion,” Appl. Opt. 27, 4454–4464 (1988). [CrossRef] [PubMed]
  6. A. Y. Chang, B. E. Battles, R. K. Hanson, “Simultaneous measurements of velocity, temperature and pressure using rapid cw wavelength-modulation laser-induced fluorescence of OH,” Opt. Lett. 15, 706–708 (1990). [CrossRef] [PubMed]
  7. D. F. Davidson, A. Y. Chang, M. D. Di Rosa, R. K. Hanson, “CW laser absorption techniques for gasdynamic measurements in supersonic flows,” Appl. Opt. 30, 2598–2608 (1991). [CrossRef] [PubMed]
  8. T. F. Johnston, T. J. Johnston, “Tunable single frequency 215–235 nm radiation by barium borate intracavity doubling in the stilbene-3 ring dye laser,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), paper FE5.
  9. A. Y. Chang, “Rapid-tuning continuous-wave laser technique applied to nitric oxide spectroscopy and flow measurements,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1991). [PubMed]
  10. A. Y. Chang, M. D. Di Rosa, D. F. Davidson, R. K. Hanson, “Rapid-tuning cw laser technique for measurements of gas velocity, temperature, pressure, density and mass flux using NO,” Appl. Opt. 30, 3011–3022 (1991). [CrossRef] [PubMed]
  11. M. D. Di Rosa, A. Y. Chang, D. F. Davidson, R. K. Hanson, “CW laser strategies for multi-parameter measurements of high speed flows containing either NO or O2,” presented at the AIAA Twenty-Ninth Aerospace Sciences Meeting, Reno, Nevada, 1991.
  12. J. M. Seitzman, G. Kychakoff, R. K. Hanson, “Instantaneous temperature field measurements using planar laser-induced fluorescence,” Opt. Lett. 10, 439–441 (1985). [CrossRef] [PubMed]
  13. K. P. Gross, R. L. McKenzie, “Measurements of fluctuating temperatures in a supersonic turbulent flow using laser-induced fluorescence,” AIAA J. 23, 1932–1936 (1985). [CrossRef]
  14. P. H. Paul, M. P. Lee, R. K. Hanson, “Molecular velocity imaging of supersonic flows using pulsed planar laser-induced fluorescence of NO,” Opt. Lett. 14, 417–419 (1989). [CrossRef] [PubMed]
  15. M. P. Lee, B. K. McMillin, R. K. Hanson, “Temperature measurements in gases using planar laser-induced fluorescence imaging of NO,” Appl. Opt. (to be published).The jet flow-facility used in these experiments is detailed further in M. P. Lee, “Temperature measurements in gases using planar laser-induced fluorescence imaging of NO and O2,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1991). [PubMed]
  16. T. Ebata, Y. Anezaki, M. Fuji, N. Mikami, M. Ito, “Rotational energy transfer in NO (A2Σ+, ν = 0 and 1) studied by two-color double-resonance spectroscopy,” Chem. Phys. 84, 151–157 (1984). [CrossRef]
  17. W. G. Mallard, J. H. Miller, K. C. Smyth, “Resonantly enhanced two-photon photoionization of NO in an atmospheric flame,” J. Chem. Phys. 76, 3483–3492 (1982). [CrossRef]
  18. G. A. Raiche, D. R. Crosley, “Temperature dependent quenching of the A2Σ+ and B2П states of NO,” J. Chem. Phys. 92, 5211–5217 (1990). [CrossRef]
  19. C. O. Laux, C. H. Kruger, “Arrays of radiative transition probabilities for the N2 first and second positive, NO beta and gamma, N2+ first negative, and O2 Schumann-Runge band systems,” J. Quant. Spectrosc. Radiat. Transfer 48, 9–24 (1992). [CrossRef]
  20. I. I. Sobel'man, L. A. Vainshtein, E. A. Yukov, Excitation of Atoms and Broadening of Spectral Lines (Springer-Verlag, Berlin, 1981), Chap. 7, pp. 241–253.
  21. A. Y. Chang, M. D. Di Rosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A ← X (0, 0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992). [CrossRef]
  22. S. Cheng, M. Zimmermann, R. B. Miles, “Supersonic-nitrogen flow-field measurements with the resonant Doppler velocimeter,” Appl. Phys. Lett. 43, 143–145 (1983). [CrossRef]
  23. W. Demtröder, Laser Spectroscopy (Springer-Verlag, Berlin, 1982), Chap. 2, p. 43.
  24. R. C. Hilborn, “Einstein coefficients, cross sections, f values, dipole moments, and all that,” Am. J. Phys. 50, 982–986 (1982). [CrossRef]
  25. L. G. Piper, L. M. Cowles, “Einstein coefficients and transition moment variation for the NO (A2Σ+ − X2П) transition,” J. Chem. Phys. 85, 2419–2422 (1986). [CrossRef]
  26. J. O. Berg, W. L. Shackleford, “Rotational redistribution effect on saturated laser-induced fluorescence,” Appl. Opt. 18, 2093–2094 (1979). [CrossRef] [PubMed]
  27. A. Timmermann, R. Wallenstein, “Doppler-free two-photon excitation of nitric oxide with frequency-stabilized cw dye laser radiation,” Opt. Commun. 39, 239–242 (1981). [CrossRef]
  28. R. Ladenburg, C. C. Van Voorhis, J. Winckler, “Interferometric studies of faster than sound phenomena. Part II. analysis of supersonic air jets,” Phys. Rev. 76, 662–677 (1949). [CrossRef]
  29. H. Ashkenas, F. S. Sherman, “The structure and utilization of supersonic free jets in low density wind tunnels,” in Rarefied Gasdynamics, J. H. de Leeuw, ed. (Academic, New York1966), Vol. 2, Suppl. 3, pp. 84–105.
  30. R. D. Zucker, Fundamentals of Gas Dynamics (Matrix, Beaverton, Ore., 1977), Chap. 4, p. 100;Fundamentals of Gas Dynamics (Matrix, Beaverton, Ore., 1977), Chap. 6, pp. 151–155.
  31. B. Hiller, “Combined planar measurements of velocity and pressure fields in compressible gas flows using laser-induced fluorescence,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1986).
  32. H. R. Murphy, D. R. Miller, “Effects of nozzle geometry on kinetics in free-jet expansions,” J. Phys. Chem. 88, 4474–4478 (1984). [CrossRef]
  33. P. V. Marrone, “Temperature and density measurements in free jets and shock waves,” Phys. Fluids 10, 521–538 (1967). [CrossRef]
  34. H. L. Johnston, W. F. Giauque, “The heat capacity of nitric oxide from 14 °K. to the boiling point and the heat of vaporization. Vapor pressures of solid and liquid phases. The entropy from spectroscopic data,” J. Am. Chem. Soc. 51, 3194–3214 (1929). [CrossRef]
  35. G. J. Van Wylen, R. E. Sontag, Fundamentals of Classical Thermodynamics, 3rd ed. (Wiley, New York, 1985), Chap. 3, p. 37.
  36. C. E. Dinerman, G. E. Ewing, “Infrared spectrum, structure, and heat of formation of gaseous (NO)2*,” J. Chem. Phys. 53, 626–631 (1970). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited