OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 32, Iss. 36 — Dec. 20, 1993
  • pp: 7572–7580

Photorefractive damage thresholds in Ti:LiNbO3 channel waveguides

Joseph C. Chon, Wei Feng, and Alan R. Mickelson  »View Author Affiliations


Applied Optics, Vol. 32, Issue 36, pp. 7572-7580 (1993)
http://dx.doi.org/10.1364/AO.32.007572


View Full Text Article

Enhanced HTML    Acrobat PDF (1032 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The photorefractive effect in titanium-in-diffused LiNbO3 waveguides is studied both experimentally and theoretically. Measurements of mode size and transmitted optical power as a function of input optical power are presented. The diffusion constants in the diffusion model and the unknown parameters in Kukhtarev’s model are determined from measurements of the near-field intensity profiles at low and at high intensity levels. These parameters can then be used to predict waveguide behavior as a function of the input power level. The simulated behavior closely resembles that observed experimentally. Calculated corrections for thermally induced index perturbation show that the thermal effects are higher-order corrections to the dominant photorefractive effect.

© 1993 Optical Society of America

History
Original Manuscript: January 11, 1993
Published: December 20, 1993

Citation
Joseph C. Chon, Wei Feng, and Alan R. Mickelson, "Photorefractive damage thresholds in Ti:LiNbO3 channel waveguides," Appl. Opt. 32, 7572-7580 (1993)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-32-36-7572


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966). [CrossRef]
  2. F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40, 3389–3396 (1969). [CrossRef]
  3. G. E. Peterson, A. M. Glass, T. J. Negran, “Control of the susceptibility of lithium niobate to laser-induced refractive index changes,” Appl. Phys. Lett. 19, 130–132 (1971). [CrossRef]
  4. A. M. Glass, D. von der Linde, T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974). [CrossRef]
  5. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals I. Steady-state,” Ferroelectrics 22, 949–960 (1979). [CrossRef]
  6. R. L. Holman, P. J. Cressman, J. F. Revelli, “Chemical control of optical damage in lithium niobate,” Appl. Phys. Lett. 32, 280–283 (1978). [CrossRef]
  7. R. A. Becker, R. C. Williamson, “Photorefractive effects in LiNbO3 channel waveguides: Model and experimental verification,” Appl. Phys. Lett. 47, 1024–1026 (1985). [CrossRef]
  8. T. Fujiwara, S. Sato, H. Mori, “Wavelength dependence of photorefractive effect in Ti-indiffused LiNbO3 waveguides,” Appl. Phys. Lett. 54, 975–977 (1989). [CrossRef]
  9. A. M. Glass, I. P. Kaminow, A. A. Ballman, D. H. Olson, “Absorption loss and photorefractive-index changes in Ti:LiNbO3 crystals and waveguides,” Appl. Opt. 19, 276–281 (1980). [CrossRef] [PubMed]
  10. M. Fukuma, J. Noda, H. Iwasaki, “Optical properties in titanium-diffused LiNbO3 strip waveguides,” J. Appl. Phys. 49, 3693–3698 (1978). [CrossRef]
  11. J. Čtyroký, M. Holfman, J. Janta, J. Schrőfel, “3D analysis of LiNbO3:Ti channel waveguides and directional coupler,” IEEE J Quantum Electron. QE-20, 400–409 (1984). [CrossRef]
  12. P. Günter, F. Micheron, “Photorefractive effects and photocurrents in KNbO3:Fe,” Ferroelectrics 18, 27–38 (1978). [CrossRef]
  13. E. Krätzig, “Photorefractive effects and photoconductivity in LiNbO3:Fe,” Ferroelectrics 21, 635–636 (1978). [CrossRef]
  14. C. M. Verber, N. F. Hartman, A. M. Glass, “Formation of integrated optics components by multiphoton photorefractive-effect processes,” Appl. Phys. Lett. 30, 272–273 (1977). [CrossRef]
  15. M. N. Armenise, C. Canali, M. De Sario, A. Carnera, P. Mazzoldi, G. Celotti, “Characterization of (Ti0.65Nb0.35) O2 compound as a source for Ti diffusion during Ti:LiNbO3 optical waveguide fabrication,” J. Appl. Phys. 54, 62–70 (1983). [CrossRef]
  16. M. D. Feit, J. A. Fleck, “Comparison of calculated and measured performance of diffused channel-waveguide couplers,” J. Opt. Soc. Am. 73, 1296–1304 (1983). [CrossRef]
  17. D. F. Nelson, R. M. Mikulyak, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45, 3688–3689 (1974). [CrossRef]
  18. L. M. Walpita, “Solutions for planar optical waveguide equations by selecting zero elements in a characteristic matrix,” J. Opt. Soc. Am. A 2, 595–602 (1985). [CrossRef]
  19. A. R. Mickelson, Guided Wave Optics, (Van Nostrand Reinhold, 1993). [CrossRef]
  20. W. Charczenko, P. S. Weitzman, H. Klotz, M. Surette, J. M. Dunn, A. R. Mickelson, “Characterization and simulation of proton exchanged integrated optical modulators with various dielectric buffer layers,” J. Lightwave Technol. LT-9, 92–100 (1991). [CrossRef]
  21. W. Charczenko, “Coupled mode analysis, fabrication and characterization of microwave integrated optical devices,” Ph.D. dissertation (University of Colorado at Boulder, Boulder, Colo., 1990).
  22. A. M. Glass, “The photorefractive effect,” Opt. Eng. 17, 470–479 (1978).
  23. A. M. Glass, D. vonder Linde, T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974). [CrossRef]
  24. H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer-, and EPR-methods,” Appl. Phys. 12, 355–368 (1977). [CrossRef]
  25. LiNbO3 Optical Grade Substrate Data Sheet (Crystal Technology, Inc., Palo Alto, Calif., 1991).
  26. P. Günter, J. P. Huignard, Photorefractive Materials and Their Application (Springer-Verlag, Berlin, 1988), Vol. I, p. 21.
  27. R. T. Smith, F. S. Welsh, “Temperature dependence of the elastic, piezoelectric and dielectric constants of lithium tantalate and lithium niobate,” J. Appl. Phys. 42, 2219–2230 (1971). [CrossRef]
  28. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), p. 232.
  29. G. D. Boyd, W. L. Bond, H. L. Carter, “Refractive index as a function of temperature in LiNbO3,” J. Appl. Phys. 38, 1941–1943 (1967). [CrossRef]
  30. N. P. Barnes, R. C. Eckhardt, D. J. Gettemy, L. B. Edgett, “Absorption coefficients and the temperature variation of the refractive index difference of nonlinear optical crystals,” IEEE J. Quantum Electron. QE-15, 1074–1076 (1979). [CrossRef]
  31. D. C. Johnson, “Measurement of low absorption coefficients in crystals,” Appl. Opt. 12, 2192–2197 (1973). [CrossRef] [PubMed]
  32. M. J. Weber, Handbook of Laser Science and Technology Volume IV. Optical Materials Part 2 (CRC, Boca Raton, Fla., 1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited