OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 32, Iss. 4 — Feb. 1, 1993
  • pp: 559–568

Determining the optical properties of turbid media by using the adding–doubling method

Scott A. Prahl, Martin J. C. van Gemert, and Ashley J. Welch  »View Author Affiliations


Applied Optics, Vol. 32, Issue 4, pp. 559-568 (1993)
http://dx.doi.org/10.1364/AO.32.000559


View Full Text Article

Enhanced HTML    Acrobat PDF (1420 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method is described for finding the optical properties (scattering, absorption, and scattering anisotropy) of a slab of turbid material by using total reflection, unscattered transmission, and total transmission measurements. This method is applicable to homogeneous turbid slabs with any optical thickness, albedo, or phase function. The slab may have a different index of refraction from its surroundings and may or may not be bounded by glass. The optical properties are obtained by iterating an adding–doubling solution of the radiative transport equation until the calculated values of the reflection and transmission match the measured ones. Exhaustive numerical tests show that the intrinsic error in the method is <3% when four quadrature points are used.

© 1993 Optical Society of America

History
Original Manuscript: January 8, 1992
Published: February 1, 1993

Citation
Scott A. Prahl, Martin J. C. van Gemert, and Ashley J. Welch, "Determining the optical properties of turbid media by using the adding–doubling method," Appl. Opt. 32, 559-568 (1993)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-32-4-559


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Pickering, S. A. Prahl, N. van Wieringen, J. B. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring optical properties of tissue,” Appl. Opt. 32, 399–410 (1993). [CrossRef] [PubMed]
  2. W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  3. M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue II. Optical properties of tissues and resulting fluence distributions,” Lasers Med. Sci. 6, 379–390 (1991). [CrossRef]
  4. B. C. Wilson, M. S. Patterson, S. T. Flock, “Indirect versus direct techniques for the measurement of the optical properties of tissues,” Photochem. Photobiol. 46, 601–608 (1987). [CrossRef] [PubMed]
  5. S. T. Flock, B. C. Wilson, M. S. Patterson, “Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835–841 (1987). [CrossRef] [PubMed]
  6. P. Kubelka, “New contributions to the optics of intensely light-scattering materials. Part I,” J. Opt. Am. 38, 448–457 (1948). [CrossRef]
  7. P. Kubelka, “Errata: new contributions to the optics of intensely light-scattering materials,” J. Opt. Soc. Am. 38, 1067 (1948). [CrossRef]
  8. P. Kubelka, “New contributions to the optics of intensely light-scattering materials. Part II: Nonhomogeneous layers,” J. Opt. Soc. Am. 44, 330–335 (1954). [CrossRef]
  9. J. T. Atkins, “Optical properties of turbid materials,” in The Biologic Effects of Ultraviolet Radiation (With Emphasis on the Skin), F. Urbach, ed. (Pergamon, London, 1969), pp. 141–149.
  10. S. Q. Duntley, “The optical properties of diffusing materials,” J. Opt. Soc. Am. 32, 61–70 (1942). [CrossRef]
  11. A. L. Lathrop, “Diffuse scattered radiation theories of Duntley and of Kubelka–Munk,” J. Opt. Soc. Am. 55, 1097–1104 (1965). [CrossRef]
  12. B. L. Diffey, “A mathematical model for ultraviolet optics in skin,” Phys. Med. Biol. 28, 647–657 (1983). [CrossRef] [PubMed]
  13. G. M. LaMuraglia, M. R. Prince, N. S. Nishioka, S. Obremski, R. Birngruber, “Optical properties of human arterial thrombus, vascular grafts, and sutures: implications for selective laser thrombus ablation,” IEEE J. Quantum Electron. 26, 2200–2206 (1990). [CrossRef]
  14. A. Vogel, C. Dlugos, R. Nuffer, R. Birngruber, “Optical properties of human sclera, and their consequences for transscleral laser applications,” Lasers Surg. Med. 11, 331–340 (1991). [CrossRef] [PubMed]
  15. P. S. Mudgett, L. W. Richards, “Multiple scattering calculations for technology,” Appl. Opt. 10, 1485–1502 (1971). [CrossRef] [PubMed]
  16. J. Reichman, “Determination of absorption and scattering coefficients for nonhomogeneous media. 1: Theory,” Appl. Opt. 12, 1811–1815 (1973). [CrossRef] [PubMed]
  17. W. G. Egan, T. W. Hilgeman, J. Reichman, “Determination of absorption and scattering coefficients for nonhomogeneous media. 2: Experiment,” Appl. Opt. 12, 1816–1823 (1973). [CrossRef] [PubMed]
  18. S. A. Prahl, I. A. Vitkin, B. C. Wilson, R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203–1217 (1992). [CrossRef] [PubMed]
  19. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989). [CrossRef] [PubMed]
  20. M. S. Patterson, E. Schwartz, B. C. Wilson, “Quantitative reflectance spectrophotometry for the noninvasive measurement of photosensitizer concentration in tissue during photodynamic therapy,” in Photodynamic Therapy: Mechanisms, T. J. Dougherty, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1065, 115–122 (1989).
  21. K. M. Yoo, F. Liu, R. R. Alfano, “Angle and time resolved studies of backscattering of light from biological tissues,” in Laser–Tissue Interaction, S. L. Jacques, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1202, 260–271 (1990).
  22. S. L. Jacques, S. A. Prahl, “Modeling optical and thermal distributions in tissue during laser irradiation,” Lasers Surg. Med. 6, 494–503 (1987). [CrossRef] [PubMed]
  23. G. Yoon, S. A. Prahl, A. J. Welch, “Accuracies of the diffusion approximation and its similarity relations for laser irradiated biological media,” Appl. Opt. 28, 2250–2255 (1989). [CrossRef] [PubMed]
  24. H. C. van de Hulst, Multiple Light Scattering (Academic, New York, 1980), Vol. 1.
  25. G. N. Plass, G. W. Kattawar, F. E. Catchings, “Matrix operator theory of radiative transfer. 1: Rayleigh scattering,” Appl. Opt. 12, 314–329 (1973). [CrossRef] [PubMed]
  26. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960), Chap. 8.
  27. S. E. Orchard, “Reflection and transmission of light by diffusing suspensions,” J. Opt. Soc. Am. 59, 1584–1597 (1969). [CrossRef]
  28. B. C. Wilson, G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983). [CrossRef] [PubMed]
  29. S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Muller, D. H. Sliney, eds., Proc. Soc. Photo-Opt. Instrum. Eng.ISO 5, 102–111 (1989).
  30. S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in high scattering tissue—I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. BME-36, 1162–1168 (1989). [CrossRef]
  31. R. Bellman, G. M. Wing, An Introduction to Invariant Imbedding (Wiley, New York, 1975).
  32. J. W. Pickering, C. J. M. Moes, H. J. C. M. Sterenborg, S. A. Prahl, M. J. C. van Gemert, “Two integrating spheres with an intervening scattering sample,” J. Opt. Soc. Am. A 9, 621–631 (1992). [CrossRef]
  33. S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).
  34. G. Yoon, A. J. Welch, M. Motamedi, M. C. J. V. Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” IEEE J. Quantum Electron. QE-23, 1721–1733 (1987). [CrossRef]
  35. H. C. van de Hulst, A New Look at Multiple Scattering, Tech. Rep. (NASA Institute for Space Studies, New York, 1962).
  36. W. M. Irvine, “Multiple scattering in planetary atmospheres,” Icarus 25, 175–204 (1975). [CrossRef]
  37. R. Priesendorfer, Hydrologie Optics (U.S. Department of Commerce, Washington, D.C., 1976), Vol. 1.
  38. W. J. Wiscombe, “On initialization, error and flux conservation in the doubling method,” J. Quant. Spectrosc. Radiative Transfer 16, 637–658 (1976). [CrossRef]
  39. W. J. Wiscombe, “Doubling initialization revisited,” J. Quant. Spectrosc. Radiat. Transfer 18, 245–248 (1977). [CrossRef]
  40. W. J. Wiscombe, “The delta-M method: rapid yet accurate radiative flux calculations for strongly asymmetric phase functions,” J. Atmos. Sci. 34, 1408–1422 (1977). [CrossRef]
  41. K. M. Case, P. F. Zweifel, Linear Transport Theory (Addison-Wesley, Reading, Mass., 1967), Chap. 8, p. 226.
  42. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, New York, 1986), Chap. 10, p. 289.
  43. F. B. Hildebrand, Introduction to Numerical Analysis (Dover, New York, 1974), Chap. 8.
  44. F. P. Bolin, L. E. Preuss, R. C. Taylor, R. J. Ference, “Refractive index of some mammalian tissues using a fiber optic cladding method,” Appl. Opt. 28, 2297–2303 (1989). [CrossRef] [PubMed]
  45. J. A. Nelder, R. Mead, Comput. J. 7, 380 (1965).
  46. H. C. van de Hulst, Multiple Light Scattering (Academic, New York, 1980), Vol. 2. Chap. 14.
  47. M. J. C. van Gemert, W. M. Star, “Relations between the Kubelka–Munk and the transport equation models for anisotropic scattering,” Lasers Life Sci. 1, 287–298 (1987).
  48. J. H. Joseph, W. J. Wiscombe, J. A. Weinman, “The delta-Eddington approximation for radiative flux transfer,” J. Atmos. Sci. 33, 2452–2459 (1976). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited