Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Time-resolved emission studies of ArF-laser-produced microplasmas

Not Accessible

Your library or personal account may give you access

Abstract

ArF-laser-produced microplasmas in CO, CO2, methanol, and chloroform are studied by time-resolved emission measurements of the plasma decay. Electron densities are deduced from Stark broadening of the line profiles of atomic H, C, O, and Cl. Plasma ionization and excitation temperatures are determined from measurements of relative populations of ionic and neutral species produced in the plasmas. A discussion of the thermodynamic equilibrium status of ArF-laser microplasmas is presented. In general, the ArF-laser-produced microplasma environment is found to be similar in all the gases studied, in terms of both temperature (15,000–20,000 K) and electron density (1017 cm−3–1018 cm−3), despite the considerable differences observed in the breakdown thresholds and relative energies deposited in the various gases.

© 1993 Optical Society of America

Full Article  |  PDF Article
More Like This
Ultraviolet laser microplasma–gas chromatography detector: detection of species-specific fragment emission

Randy J. Locke, Jeffrey B. Morris, Brad E. Forch, and Andrzej W. Miziolek
Appl. Opt. 29(33) 4987-4992 (1990)

Laser-induced carbon plasma emission spectroscopic measurements on solid targets and in gas-phase optical breakdown

László Nemes, Anna M. Keszler, James O. Hornkohl, and Christian G. Parigger
Appl. Opt. 44(18) 3661-3667 (2005)

Optical emission enhancement of laser-produced copper plasma under a steady magnetic field

Yu Li, Changhong Hu, Hanzhuang Zhang, Zhankui Jiang, and Zhongshan Li
Appl. Opt. 48(4) B105-B110 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.