OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 33, Iss. 3 — Jan. 20, 1994
  • pp: 443–452

Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm

Howard R. Gordon and Menghua Wang  »View Author Affiliations


Applied Optics, Vol. 33, Issue 3, pp. 443-452 (1994)
http://dx.doi.org/10.1364/AO.33.000443


View Full Text Article

Enhanced HTML    Acrobat PDF (1325 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The second generation of ocean-color-analyzing instruments requires more accurate atmospheric correction than does the Coastal Zone Color Scanner (CZCS), if one is to utilize fully their increased radiometric sensitivity. Unlike the CZCS, the new instruments possess bands in the near infrared (NIR) that are solely for aiding atmospheric correction. We show, using aerosol models, that certain assumptions regarding the spectral behavior of the aerosol reflectance employed in the standard CZCS correction algorithm are not valid over the spectral range encompassing both the visible and the NIR. Furthermore, we show that multiple-scattering effects on the algorithm depend significantly on the aerosol model. Following these observations, we propose an algorithm that utilizes the NIR bands for atmospheric correction to the required accuracy. Examples of the dependence of the error on the aerosol model, the turbidity of the atmosphere, and surface roughness (waves) are provided. The error in the retrieved phytoplankton-pigment concentration (the principal product of ocean-color sensors) induced by errors in the atmospheric correction are shown to be <20% in approximately 90% of the cases examined. Finally, the aerosol thickness (τ a ) is estimated through a simple extension of the correction algorithm. Simulations suggest that the error in the recovered value of τ a should be ≲ 10%.

© 1994 Optical Society of America

History
Original Manuscript: February 1, 1993
Revised Manuscript: June 9, 1993
Published: January 20, 1994

Citation
Howard R. Gordon and Menghua Wang, "Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm," Appl. Opt. 33, 443-452 (1994)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-33-3-443


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Y. E. Sayed, B. Strum, R. C. Wrigley, C. S. Yentsch, “Nimbus 7 Coastal Zone Color Scanner: system description and initial imagery,” Science 210, 60–63 (1980). [CrossRef] [PubMed]
  2. H. R. Gordon, D. K. Clark, J. L. Mueller, W. A. Hovis, “Phytoplankton pigments derived from the Nimbus–7 CZCS: initial comparisons with surface measurements,” Science 210, 63–66 (1980). [CrossRef] [PubMed]
  3. H. R. Gordon, A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, New York, 1983).
  4. S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, SeaWiFS Technical Report Series: Volume 1, An Overview of SeaWiFS and Ocean Color, NASA Tech. Memo. 104566 (NASA Greenbelt Space Flight Center, Greenbelt, Md., July1992).
  5. V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, H. Ostrow, “MODIS: advanced facility instrument for studies of the earth as a system,” IEEE Trans. Geosci. Remote Sensing 27, 145–152 (1989). [CrossRef]
  6. H. R. Gordon, “Radiative transfer: A technique for simulating the ocean in satellite remote-sensing calculations,” Appl. Opt. 15, 1974–1979 (1976). [CrossRef] [PubMed]
  7. H. R. Gordon, “Removal of atmospheric effects from satellite imagery of the oceans,” Appl. Opt. 17, 1631–1636 (1978). [CrossRef] [PubMed]
  8. H. R. Gordon, D. K. Clark, “Atmospheric effects in the remote sensing of phytoplankton pigments,” Boundary-Layer Meteorol. 18, 299–313 (1980). [CrossRef]
  9. H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison between ship determinations and Coastal Zone Color Scanner estimates,” Appl. Opt. 22, 20–36 (1983). [CrossRef] [PubMed]
  10. M. Viollier, D. Tanre, P. Y. Deschamps, “An algorithm for remote sensing of water color from space,” Boundary-Layer Meteorol. 18, 247–267 (1980). [CrossRef]
  11. H. R. Gordon, D. J. Castano, “The Coastal Zone Color Scanner atmospheric correction algorithm: multiple scattering effects,” Appl. Opt. 26, 2111–2122 (1987). [CrossRef] [PubMed]
  12. H. R. Gordon, J. W. Brown, R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus 7 Coastal Zone Color Scanner,” Appl. Opt. 27, 862–871 (1988). [CrossRef] [PubMed]
  13. H. R. Gordon, M. Wang, “Surface roughness considerations for atmospheric correction of ocean color sensors. 1: Rayleigh scattering component,” Appl. Opt. 31, 4247–4260 (1992). [CrossRef] [PubMed]
  14. H. R. Gordon, M. Wang, “Surface-roughness considerations for atmospheric correction of ocean color sensors. 2: Error in the retrieved water-leaving radiance,” Appl. Opt. 31, 4261–4267 (1992). [CrossRef] [PubMed]
  15. P. Y. Deschamps, M. Herman, D. Tanre, “Modeling of the atmospheric effects and its application to the remote sensing of ocean color,” Appl. Opt. 22, 3751–3758 (1983). [CrossRef] [PubMed]
  16. H. R. Gordon, D. K. Clark, “Clear water radiances for atmospheric correction of Coastal Zone Color Scanner imagery,” Appl. Opt. 20, 4175–4180 (1981). [CrossRef] [PubMed]
  17. A. Bricaud, A. Morel, “Atmospheric corrections and interpretation of marine radiances in CZCS imagery: use of a reflectance model,” Oceanologica Acta 7, 33–50 (1987).
  18. J.-M. André, A. Morel, “Atmospheric corrections and interpretation of marine radiances in CZCS imagery, revisited,” Oceanologica Acta 14, 3–22 (1991).
  19. G. C. Feldman, N. Kuring, C. Ng, W. Esaias, C. R. McClain, J. Elrod, N. Maynard, D. Endres, R. Evans, J. Brown, S. Walsh, M. Carle, G. Podesta, “Ocean color: availability of the global data set,” EOS Trans. Am. Geophys. Union 70, 634–641 (1989). [CrossRef]
  20. E. P. Shettle, R. W. Fenn, Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on Their Optical Properties, Rep. AFGL-TR-79-0214, (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).
  21. F. X. Kenizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, Atmospheric Transmittance/Radiance: The lowtran 6 Model, Rep. AFGL-TR-83-0187, NTIS AD A 137796 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1983).
  22. P. J. Reddy, F. W. Kreiner, J. J. Deluisi, Y. Kim, “Aerosol optical depths over the Atlantic derived from shipboard sunphotometer observations during the 1988 Global Change Expedition,” Global Biogeochemic. Cycles 4, 225–240 (1990). [CrossRef]
  23. M. Wang, H. R. Gordon, “Remote sensing of environment,” a simple, moderately accurate, atmospheric correction algorithm for SeaWiFS, (submitted to Remote Sensing Environ.).
  24. M. Wang, “Atmospheric correction of the second generation ocean color sensors,” Ph.D. dissertation (University of Miami, Coral Gables, Fla., 1991).
  25. C. Junge, “Atmospheric chemistry,” Adv. Geophys. 4, 1–108 (1958). [CrossRef]
  26. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93D, 10909–10924 (1988). [CrossRef]
  27. R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992). [CrossRef] [PubMed]
  28. R. J. Charlson, J. E. Lovelock, M. O. Andreae, S. G. Warren, “Oceanic phytoplankton, atmospheric sulphur, cloud albedo, and climate,” Nature (London) 326, 655–661 (1987). [CrossRef]
  29. P. G. Falkowski, Y. Kim, Z. Kolber, C. Wilson, C. Wirick, R. Cess, “Natural versus anthropogenic factors affecting low-level cloud albedo over the North Atlantic,” Science 256, 1311–1313 (1992). [CrossRef] [PubMed]
  30. M. Griggs, “Measurements of the aerosol optical thickness over water using ERTS-1 data,” J. Air Pollut. Control Assoc. 25, 622–626 (1975). [CrossRef] [PubMed]
  31. Y. Mekler, H. Quenzel, G. Ohring, I. Marcus, “Relative atmospheric aerosol content from ERTS observations,” J. Geophys. Res. 82, 967–970 (1977). [CrossRef]
  32. M. Griggs, AVHRR Measurements of Atmospheric Aerosols Over Oceans, NOAA Final Rep. contract M0–A01–78–00–4092 (National Oceanic and Atmospheric Administration, National Environmental Satellite Service, Washington, D.C., November1981).
  33. M. Griggs, Satellite Measurements of Tropospheric Aerosols, NASA Contractor Rep. 3459 (NASA Langley Research Center, Hampton, Va., August1981).
  34. M. Griggs, AVHRR Aerosol Ground Truth Experiment, Final Rep. contract NA–83–SAC–00106 (National Oceanic and Atmospheric Administration, National Environmental Satellite Service, Washington, D.C., January1984).
  35. R. S. Fraser, “Satellite measurement of mass of Sahara dust in the atmosphere,” Appl. Opt. 15, 2471–2479 (1976). [CrossRef] [PubMed]
  36. P. Koepke, H. Quenzel, “Turbidity of the atmosphere determined from satellite: calculation of optimum viewing geometry,” J. Geophys. Res. 84, 7847–7856 (1979). [CrossRef]
  37. P. Koepke, H. Quenzel, “Turbidity of the atmosphere determined from satellite: calculation of optimum wavelength,” J. Geophys. Res. 86, 9801–9805 (1981). [CrossRef]
  38. P. A. Durkee, D. R. Jensen, E. E. Hindman, T. H. V. Haar, “The relationship between marine aerosol particles and satellite-detected radiance,” J. Geophys. Res. 91D, 4063–4072 (1986). [CrossRef]
  39. C. R. N. Rao, L. L. Stowe, E. P. McClain, J. Sapper, “Development and application of aerosol remote sensing with AVHRR data from the NOAA satellites,” in Aerosols and Climate, P. Hobbs, M. P. McCormick, eds. (Deepak, Hampton, Va., 1988) pp. 69–80.
  40. P. Koepke, “Effective reflectance of ocean whitecaps,” Appl. Opt. 23, 1816–1824 (1984). [CrossRef] [PubMed]
  41. E. C. Monahan, I. G. O’Muircheartaigh, “Whitecaps and the passive remote sensing of the ocean surface,” Int. J. Remote Sensing 7, 627–642 (1986). [CrossRef]
  42. A. Mugnai, W. J. Wiscombe, “Scattering from nonspherical Chebyshev particles. 3: Variability in angular scattering patterns,” Appl. Opt. 28, 3061–3073 (1989). [CrossRef] [PubMed]
  43. M. Wang, H. R. Gordon, “Retrieval of the columnar aerosol phase function and single-scattering albedo from sky radiance over the ocean: simulations,” Appl. Opt. 32, 4598–4609 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited