OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 34, Iss. 12 — Apr. 20, 1995
  • pp: 2033–2044

Coherent CO2 laser communication system with modulable retroreflectors

Gregory J. Olson, Hans W. Mocker, Nick A. Demma, and Jamie Billing Ross  »View Author Affiliations

Applied Optics, Vol. 34, Issue 12, pp. 2033-2044 (1995)

View Full Text Article

Enhanced HTML    Acrobat PDF (580 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A coherent CO2 laser communication system that yields high-quality voice communications between a transmit–receive station and a remote site (24 km) where modulable retroreflectors are located was developed. The potential range capability of this system was 80 km, and the system was improved by 20 dB in the signal-to-noise ratio over a direct-detection system.

© 1995 Optical Society of America

Original Manuscript: October 18, 1993
Revised Manuscript: October 24, 1994
Published: April 20, 1995

Gregory J. Olson, Hans W. Mocker, Nick A. Demma, and Jamie Billing Ross, "Coherent CO2 laser communication system with modulable retroreflectors," Appl. Opt. 34, 2033-2044 (1995)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. E. Goodwin, T. A. Nussmeier, “Optical heterodyne communication experiments at 10.6 μ,” IEEE J. Quantum. Electron. QE-1, 612–617 (1968). [CrossRef]
  2. H. W. Mocker, “A 10.6-μ optical heterodyne communication system,” Appl. Opt. 8, 677–684 (1969). [CrossRef] [PubMed]
  3. J. H. McElroy, N. McAvoy, E. H. Johnson, J. J. Degnan, F. G. Goodwin, D. M. Henderson, T. A. Nussmeier, L. S. Stokes, B. J. Peyton, T. Flattau, “CO2 laser communication systems for near-earth space applications,” Proc. IEEE 65, 221–251 (1977). [CrossRef]
  4. A. L. Scholtz, W. R. Leeb, R. Flatscher, H. K. Philipp, “Realization of a 10-μm homodyne receiver,” J. Lightwave Technol. 5, 625–632 (1987). [CrossRef]
  5. J. E. A. Selby, R. A. McClatchey, “Atmospheric transmittance from 0.25 to 28.5 μm: computer code lowtran 3,” Environ. Res. Paper AFCRL-TR-75-0255 (U.S. Air Force Geophysics Laboratory, Hanscomb Air Force Base, Mass., 1975).
  6. A. Landman, H. Marantz, V. Early, “Light modulation by means of the Stark effect in molecular gases—application to CO2 lasers,” Appl. Phys. Lett. 15, 357–360 (1969). [CrossRef]
  7. M. B. Klein, R. H. Sipman, “Large-aperture Stark-modulated retroreflector at 10.8 μm,” J. Appl. Phys. 51, 6101–6104 (1980). [CrossRef]
  8. A. S. Khalafalla, J. Jurisson, D. Burbank, J. Schuck, “Birefringent mode of operation of 9/65/35 PLZT ceramic,” in Electro-Optic Principles and Applications, J. B. DeVelis, B. J. Thompson, eds., Proc. Soc. Photo-Opt. Instrum. Eng., 38, 49–54 (1973).
  9. B. Furch, A. L. Scholtz, W. R. Leeb, “Isolation and frequency conversion properties of acousto-optic modulators,” Appl. Opt. 21, 2344–2347 (1982). [CrossRef] [PubMed]
  10. L. Kazovsky, “Balanced phase-locked loops for optical homodyne receivers: performance analysis, design considerations, and laser linewidth requirements,” J. Lightwave Technol. 4, 182–195 (1986). [CrossRef]
  11. H. W. Mocker, “Pressure and current-dependent shifts in the frequency of oscillation of the CO2 laser,” Appl. Phys. Lett. 12, 20–23 (1968). [CrossRef]
  12. P. K. L. Yin, “Studies on CO2 isotope molecules and atmospheric transmission of 12C18O2 laser radiation,” Appl. Opt. 8, 997–1006. (1969). [CrossRef] [PubMed]
  13. R. L. Abrams, “Gigahertz tunable waveguide CO2 laser,” Appl. Phys. Lett. 25, 304–306 (1974). [CrossRef]
  14. S. A. Gonchukov, S. T. Karnilov, E. D. Protsenko, “Tunable CO2 waveguide laser,” Sov. Phys. Tech. Phys. 23, 1084–1086 (1978).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited