OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 12 — Apr. 20, 1996
  • pp: 1956–1976

Avalanche photodiodes and quenching circuits for single-photon detection

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa  »View Author Affiliations


Applied Optics, Vol. 35, Issue 12, pp. 1956-1976 (1996)
http://dx.doi.org/10.1364/AO.35.001956


View Full Text Article

Enhanced HTML    Acrobat PDF (402 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Avalanche photodiodes, which operate above the breakdown voltage in Geiger mode connected with avalanche-quenching circuits, can be used to detect single photons and are therefore called single-photon avalanche diodes SPAD’s. Circuit configurations suitable for this operation mode are critically analyzed and their relative merits in photon counting and timing applications are assessed. Simple passive-quenching circuits (PQC’s), which are useful for SPAD device testing and selection, have fairly limited application. Suitably designed active-quenching circuits (AQC’s) make it possible to exploit the best performance of SPAD’s. Thick silicon SPAD’s that operate at high voltages (250–450 V) have photon detection efficiency higher than 50% from 540- to 850-nm wavelength and still ~3% at 1064 nm. Thin silicon SPAD’s that operate at low voltages (10–50 V) have 45% efficiency at 500 nm, declining to 10% at 830 nm and to as little as 0.1% at 1064 nm. The time resolution achieved in photon timing is 20 ps FWHM with thin SPAD’s; it ranges from 350 to 150 ps FWHM with thick SPAD’s. The achieved minimum counting dead time and maximum counting rate are 40 ns and 10 Mcps with thick silicon SPAD’s, 10 ns and 40 Mcps with thin SPAD’s. Germanium and III–V compound semiconductor SPAD’s extend the range of photon-counting techniques in the near-infrared region to at least 1600-nm wavelength.

© 1996 Optical Society of America

History
Original Manuscript: December 20, 1994
Revised Manuscript: July 26, 1995
Published: April 20, 1996

Citation
S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, "Avalanche photodiodes and quenching circuits for single-photon detection," Appl. Opt. 35, 1956-1976 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-12-1956


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. O’Connor, D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1984).
  2. S. Cova, M. Bertolaccini, C. Bussolati, “The measurement of luminescence waveforms by single photon techniques,” Phys. Status. Solid A 18, 11–62 (1973). [CrossRef]
  3. H. Kume, K. Koyama, K. Nakatsugawa, S. Suzuki, D. Fatlowitz, “Ultrafast microchannel plate photomultipliers,” Appl. Opt. 27, 1170–1178 (1988). [CrossRef] [PubMed]
  4. H. Dautet, P. Deschamps, B. Dion, A. D. MacGregor, D. MacSween, R. J. McIntyre, C. Trottier, P. P. Webb, “Photon counting techniques with silicon avalanche photodiodes,” Appl. Opt. 32, 3894–3900 (1993); SPCM-AQ Single-photon Counting Module Data Sheet (EG&G Optoelectronics Canada, Ltd., Vaudreuil, Quebec, Canada, 1994). [PubMed]
  5. S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20 ps timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989). [CrossRef]
  6. A. Lacaita, M. Ghioni, F. Zappa, G. Ripamonti, S. Cova, “Recent advances in the detection of optical photons with silicon photodiodes,” Nucl. Instrum. Methods A 326, 290–294 (1993). [CrossRef]
  7. J. G. Rarity, P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64, 2495–2498 (1990). [CrossRef] [PubMed]
  8. Y. H. Shih, C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett. 61, 2921–2924 (1988). [CrossRef] [PubMed]
  9. P. D. Townsend, J. G. Rarity, P. R. Tapster, “Single photon interference in 10 km long optical fibre interferometer,” Electron. Lett. 29, 634–635 (1993). [CrossRef]
  10. N. S. Nightingale, “A new silicon avalanche photodiode photon counting detector module for astronomy,” Exp. Astron. 1, 407–422 (1991). [CrossRef]
  11. D. Bonaccini, S. Cova, M. Ghioni, R. Gheser, S. Esposito, G. Brusa, “Novel avalanche photodiode for adaptive optics,” in Adaptive Optics in Astronomy, M. Ealey, F. Merkle, eds., Proc. SPIE 2201, 650–657 (1994).
  12. L-Q. Li, L. M. Davis, “Single photon avalanche diode for single molecule detection,” Rev. Sci. Instrum. 64, 1524–1529 (1993). [CrossRef]
  13. S. A. Soper, Q. L. Mattingly, P. Vegunta, “Photon burst detection of single near-infrared fluorescent molecules,” Anal. Chem. 65, 740–747 (1993). [CrossRef]
  14. T. A. Louis, G. Ripamonti, A. Lacaita, “Photoluminescence lifetime microscope spectrometer based on time-correlated single-photon counting with an avalanche diode detector,” Rev. Sci. Instrum. 61, 11–22 (1990). [CrossRef]
  15. G. S. Buller, J. S. Massa, A. C. Walker, “All solid-state microscope-based system for picosecond time-resolved photoluminescence measurements on II–VI semiconductors,” Rev. Sci. Instrum. 63, 2994–2998 (1992). [CrossRef]
  16. K. P. Ghiggino, M. R. Harris, P. G. Spizzirri, “Fluorescence lifetime measurements using a novel fiber-optic laser scanning confocal microscope,” Rev. Sci. Instrum. 63, 2999–3002 (1992). [CrossRef]
  17. S. Cova, A. Longoni, A. Adreoni, R. Cubeddu, “A semiconductor detector for measuring ultra-weak fluorescence decays with 70 ps FWHM resolution,” IEEE J. Quantum Electron. QE-19, 630–634 (1983). [CrossRef]
  18. T. E. Ingerson, R. J. Kearney, R. L. Coulter, “Photon counting with photodiodes,” Appl. Opt. 22, 2013–2018 (1983). [CrossRef] [PubMed]
  19. A. Andreoni, R. Cubeddu, “Photophysical properties of photofrin in different solvents,” Chem. Phys. Lett. 108, 141–144 (1984). [CrossRef]
  20. A. Andreoni, R. Cubeddu, C. N. Knox, T. G. Truscott, “Fluorescence lifetimes of angular furocoumarins,” Photochem. Photobiol. 46, 169–173 (1987). [CrossRef] [PubMed]
  21. T. A. Louis, G. H. Schatz, P. Klein-Bolting, A. R. Holzwarth, G. Ripamonti, S. Cova, “Performance comparison of a single-photon avalanche diode with a microchannel-plate photomultiplier in time-correlated single-photon counting,” Rev. Sci. Instrum. 59, 1148–1152 (1988). [CrossRef]
  22. S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, “High accuracy picosecond characterization of gain-switched laser diodes,” Opt. Lett. 14, 1341–1343 (1989). [CrossRef] [PubMed]
  23. B. F. Levine, C. G. Bethea, “Room-temperature optical time domain reflectometer using a photon counting InGaAs/InP avalanche detector,” Appl. Phys. Lett. 46, 333–335 (1985). [CrossRef]
  24. G. Ripamonti, S. Cova, “Optical time-domain reflectometry with centimetre resolution at 10−15 W sensitivity,” Electron. Lett. 22, 818–819 (1986). [CrossRef]
  25. G. Ripamonti, M. Ghioni, A. Lacaita, “No dead-space optical time-domain reflectometer,” IEEE J. Lightwave Technol. 8, 1278–1283 (1990). [CrossRef]
  26. A. Lacaita, P. A. Francese, S. Cova, G. Ripamonti, “Single-photon optical time-domain reflectometer at 1.3 μm with 5-cm resolution and high sensitivity,” Opt. Lett. 18, 1110–1112 (1993). [CrossRef] [PubMed]
  27. G. Ripamonti, A. Lacaita, “Single-photon semiconductor photodiodes for distributed optical fiber sensors: state of the art and perspectives,” in Distributed and Multiplexed Fiber Optic Sensors II, J. P. Dakin, A. D. Kersey, eds., Proc. SPIE 1797, 38–49 (1993).
  28. M. Hoebel, J. Ricka, “Dead-time and afterpulsing correction in multiphoton timing with nonideal detectors,” Rev. Sci. Instrum. 65, 2326–2336 (1994). [CrossRef]
  29. I. Prochàzka, K. Hamal, B. Sopko, “Photodiode based detector package for centimeter satellite laser ranging,” in Proceedings of the Seventh International Workshop on Laser Ranging Instrumentation, C. Veillet, ed. (OCA-CERGA, Grasse, France, 1990), pp. 219–221.
  30. F. Zappa, G. Ripamonti, A. Lacaita, S. Cova, C. Samori, “Tracking capabilities of SPADs for laser ranging,” in Proceedings of the Eighth International Workshop on Laser Ranging Instrumentation, J. J. Degnan, ed., NASA Conf. Publ. 3214 (NASA, Greenbelt, Md., 1992), pp. 5, 25–30.
  31. R. G. Brown, K. D. Ridley, J. G. Rarity, “Characterization of silicon avalanche photodiodes for photon correlation measurements. 1: Passive quenching,” Appl. Opt. 25, 4122–4126 (1986). [CrossRef] [PubMed]
  32. R. G. Brown, R. Jones, J. G. Rarity, K. D. Ridley, “Characterization of silicon avalanche photodiodes for photon correlation measurements. 2: Active quenching,” Appl. Opt. 26, 2383–2389 (1987). [CrossRef] [PubMed]
  33. M. Ghioni, G. Ripamonti, “Improving the performance of commercially-available Geiger-mode avalanche photodiodes,” Rev. Sci. Instrum. 62, 163–167 (1991). [CrossRef]
  34. A. Lacaita, M. Ghioni, S. Cova, “Double epitaxy improves single-photon avalanche diode performance,” Electron. Lett. 25, 841–843 (1989). [CrossRef]
  35. A. Lacaita, S. Cova, M. Ghioni, F. Zappa, “Single photon avalanche diodes with ultrafast pulse response free from slow tails,” IEEE Electron. Devices Lett. 14(7), 360–362 (1993). [CrossRef]
  36. A. Lacaita, M. Mastrapasqua, M. Ghioni, S. Vanoli, “Observation of avalanche propagation by multiplication assisted diffusion in p–n junction,” Appl. Phys. Lett. 57, 489–491 (1990). [CrossRef]
  37. A. Lacaita, M. Mastrapasqua, “Strong dependence of time resolution on detector diameter in single photon avalanche diodes,” Electron. Lett. 26, 2053–2054 (1990). [CrossRef]
  38. A. Lacaita, S. Cova, A. Spinelli, F. Zappa, “Photon-assisted avalanche spreading in reach-through photodiodes,” Appl. Phys. Lett. 62, 606–608 (1993). [CrossRef]
  39. A. Lacaita, S. Longhi, A. Spinelli, “Limits to the timing performance of single photon avalanche diodes,” in Proceedings of the International Conference on Applications of Photonic Technology, G. A. Lampropulos, J. Chrostowski, R. M. Measures, eds. (Plenum, London, 1994).
  40. B. F. Levine, C. C. Bethea, “10-MHz single-photon counting at 1.3 μm,” Appl. Phys. Lett. 44, 581–582 (1984). [CrossRef]
  41. B. F. Levine, C. G. Bethea, “Single-photon detection at 1.3 μm using a gated avalanche photodiode,” Appl. Phys. Lett. 44, 553–555 (1984). [CrossRef]
  42. A. Lacaita, S. Cova, F. Zappa, P. A. Francese, “Subnanosecond single-photon timing with commercially available germanium photodiodes,” Opt. Lett. 18, 75–77 (1993). [CrossRef] [PubMed]
  43. A. Lacaita, P. A. Francese, F. Zappa, S. Cova, “Single-photon detection beyond 1 μm: performance of commercially available germanium photodiodes,” Appl. Opt. 33, 6902–6918 (1994). [CrossRef] [PubMed]
  44. F. Zappa, A. Lacaita, S. Cova, P. Webb, “Nanosecond single-photon timing with InGaAs/InP photodiodes,” Opt. Lett. 19, 846–848 (1994). [CrossRef] [PubMed]
  45. B. F. Levine, C. G. Bethea, C. G. Campbell, “Near room-temperature single photon counting with an InGaAs avalanche photodiode,” Electron. Lett. 20, 596–598 (1984). [CrossRef]
  46. R. H. Haitz, “Mechanisms contributing to the noise pulse rate of avalanche diodes,” J. Appl. Phys. 36, 3123–3131 (1965). [CrossRef]
  47. S. Cova, A. Lacaita, G. Ripamonti, “Trapping phenomena in avalanche photodiodes on nanosecond scale,” IEEE Electron. Devices Lett. 12, 685–687 (1991). [CrossRef]
  48. A. W. Lightstone, R. J. McIntyre, “Photon counting silicon avalanche photodiodes for photon correlation spectroscopy,” in Photon Correlation Techniques and Applications, Vol. 1 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1988), pp. 183–191.
  49. R. H. Haitz, “Model for the electrical behavior of a micro-plasma,” J. Appl. Phys. 35, 1370–1376 (1964). [CrossRef]
  50. S. Cova, A. Longoni, A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981). [CrossRef]
  51. S. Cova, A. Longoni, G. Ripamonti, “Active-quenching and gating circuits for single-photon avalanche diodes (SPADs),” IEEE Trans. Nucl. Sci. NS-29, 599–601 (1982); presented at the IEEE 1981 Nuclear Science Symposium, San Francisco, Calif., 21–23 October 1981. [CrossRef]
  52. A. Lacaita, A. Spinelli, S. Longhi, “Avalanche transients in shallow p–n junctions biased above breakdown,” Appl. Phys. Lett. 67, 2627–2730 (1995). [CrossRef]
  53. R. D. Evans, Atomic Nucleus (McGraw-Hill, New York, 1955), Chap. 28, pp. 785–793.
  54. W. Nicholson, Nuclear Electronics (Wiley, New York, 1974), Appendix B5, pp. 473–376.
  55. Ref. 54, pp. 259–260.
  56. P. Antognetti, S. Cova, A. Longoni, “A study of the operation and performances of an avalanche diode as a single photon detector,” in Proceedings of the Second Ispra Nuclear Electronics Symposium, EURATOM Publ. EUR 537e (Office for Official Publications of the European Communities, Luxembourg, Belgium, 1975), pp. 453–456.
  57. P. A. Ekstrom, “Triggered-avalanche detection of optical photons,” J. Appl. Phys. 52, 6974–6977 (1981). [CrossRef]
  58. S. Cova, “Active quenching circuit for avalanche photodiodes,” U.S. patent4,963,727 (20October1990) (Italian patent 22367A/88); licensed for industrial production to Silena SpA, Milano, Italy.
  59. T. O. Regan, H. C. Fenker, J. Thomas, J. Oliver, “A method to quench and recharge avalanche photodiodes for use in high rate situations,” Nucl. Instrum. Methods A 326, 570–573 (1993); H. C. Fenker, T. O. Regan, J. Thomas, M. Wright, “Higher efficiency active quenching circuit for avalanche photodiodes,” ICFA Instrumentation Bulletin No. 10 (Fermilab, Batvaia, Ill., December1993), pp. 12–14. [CrossRef]
  60. Ultrafast comparators AD96685, Linear Product Databook (Analog Devices, Inc., P.O. Box 9106, Norwood, Mass., 1988), pp. 3–17.
  61. B. K. Garside, “High resolution OTDR measurements,” Photon. Spectra 22(9), 79–86 (September1988).
  62. “1.7-μm near infrared photomultiplier” (patent pending), preliminary data sheet E(500) (Electron Tube Center, Hamamatsu Photonics KK, Hamamatsu, Japan, March1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited