OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 32 — Nov. 10, 1996
  • pp: 6354–6364

Hybrid free-space optical bus system for board-to-board interconnections

Jang-Hun Yeh, Raymond K. Kostuk, and Kun-Yii Tu  »View Author Affiliations


Applied Optics, Vol. 35, Issue 32, pp. 6354-6364 (1996)
http://dx.doi.org/10.1364/AO.35.006354


View Full Text Article

Acrobat PDF (1039 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A free-space optical bus system is described for board-to-board interconnections at the backplane level. The system uses active optoelectronic modules as the interface between the circuit boards and the electrical backplane. Substrate-mode holograms are used to implement signal broadcast operations between boards, and each board on the backplane shares common free-space channels for transmitting and receiving signals. System-design considerations are given, and the potential performance of the optical bus system is evaluated. An experimental demonstration is also presented for the signal broadcast operation through cascaded substrate-mode holograms at a data rate of 622 Mb/s.

© 1996 Optical Society of America

History
Original Manuscript: January 29, 1996
Revised Manuscript: April 11, 1996
Published: November 10, 1996

Citation
Jang-Hun Yeh, Raymond K. Kostuk, and Kun-Yii Tu, "Hybrid free-space optical bus system for board-to-board interconnections," Appl. Opt. 35, 6354-6364 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-32-6354


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. D. Giacomo, Digital Bus Handbook (McGraw-Hill, New York, 1990).
  2. Peripheral Component Interface Special Interest Group, Peripheral-component-interface local bus specification 2.1 (Peripheral Component Interface Special Interest Group, MyS HF3-15A, 5200 N.E. Elam Young Parkway, Hillsboro, Ore. 97214, 1994).
  3. J. Black, The System Engineer's Handbook: A Guide to Building VMEbus and VXIbus Systems (Academic, New York, 1992).
  4. D. Hawley, “Future bus,” in Digital Bus Handbook, J. D. Giacomo, ed. (McGraw-Hill, New York, 1990), Chap. 7 pp.7.1–7.39.
  5. J. D. Giacomo, “Limits of performance of backplane buses,” in Digital Bus Handbook, J. D. Giacomo, ed. (McGraw-Hill, New York, 1990), Chap. 18, pp. 18.1–18.23.
  6. D. R. Kiefer, V. W. Swanson, “Implementation of optical clock distribution in a supercomputer,” in Optical Computing, Vol.10 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 260–262.
  7. T. Sakano, T. Matsumoto, K. Noguchi, T. Sawabe, “Design and performance of a multiprocessor system employing board-to-board free-space optical interconnections: COSINE-1,” Appl. Opt. 30, 2334–2343 (1991). [CrossRef] [PubMed]
  8. T. Sakano, K. Noguchi, T. Matsumoto, “Multiprocessor system using an automatically rearrangeable free-space multichannel optical switch: COSINE-II,” Appl. Opt. 32, 3690–3699 (1993). [CrossRef] [PubMed]
  9. T. Sakano, T. Matsumoto, K. Noguchi, “Three-dimensional board-to-board free-space optical interconnects and their application to the prototype multiprocessor: COSINE-III,” Appl. Opt. 34, 1815–1822 (1995). [CrossRef] [PubMed]
  10. K. Hamanaka, “Optical bus interconnection system using Selfoc lenses,” Opt. Lett. 16, 1222–1224 (1991). [CrossRef] [PubMed]
  11. C. H. Henry, G. E. Blonder, R. F. Kazarinov, “Glass waveguides on silicon for hybrid optical packaging,” IEEE J. Lightwave Technol. 7, 1530–1539 (1989). [CrossRef]
  12. F. MacKenzie, T. G. Hodgkinson, S. A. Cassidy, P. Healy, “Optical interconnect based on a fiber bus,” Opt. Quantum Electron. 24, 491–504 (1992). [CrossRef]
  13. S. H. Song, E. H. Lee, “Focusing-grating-coupler arrays for uniform and efficient signal distribution in a backboard optical interconnect,” Appl. Opt. 34, 5913–5919 (1995). [CrossRef] [PubMed]
  14. R. T. Chen, H. Lu, D. Robinson, D. Plant, H. Fetterman, “High-speed board-to-board optical interconnection,” in Photopolymer Device Physics, Chemistry, and Applications II, R. A. Lessard, ed., Proc. SPIE1559, 110–117 (1991).
  15. R. K. Kostuk, J.-H. Yeh, M. Fink, “Distributed optical data bus for board-level interconnects with a substrate-mode holographic window,” Appl. Opt. 32, 5010–5021 (1993). [CrossRef] [PubMed]
  16. C. Sebillotte, “Holographic optical backplane for boards interconnection,” in Microelectronic Interconnects and Packages: Optical and Electrical Technologies, G. Arjavalingam, J. Pazaris, eds., Proc. SPIE1389, 600–611 (1990).
  17. S. Natarajan, C. Zhao, R. T. Chen, “Bi-directional optical backplane bus for general purpose multiprocessor board-to-board optoelectronic interconnects,” J. Lightwave Technol. 13, 1031–1040 (1995). [CrossRef]
  18. H.-J. Haumann, H. Kobolla, F. Sauer, J. Schmidt, J. Schwider, W. Stork, N. Streibl, R. Volkel, “Optoelectronic interconnection based on a light-guiding plate with holographic coupling elements,” Opt. Eng. 30, 1620–1623 (1991). [CrossRef]
  19. R. C. Kim, E. Chen, F. Lin, “An optical holographic back-plane interconnect system,” IEEE J. Lightwave Technol. 9, 1650–1656 (1990). [CrossRef]
  20. B. Dhoedt, P. De Dobbelaere, J. Blondelle, P. Van Daele, P. Demeester, R. Baets, “Monolithic integration of diffractive lenses with LED arrays for a board-to-board free-space optical interconnect,” J. Lightwave Technol. 13, 1065–1073 (1995). [CrossRef]
  21. J.-H. Yeh, R. K. Kostuk, “Substrate-mode holograms used in optical interconnects: design issues,” Appl. Opt. 34, 3152–3164 (1995). [CrossRef] [PubMed]
  22. R. K. Kostuk, M. Kato, Y.-T. Huang, “Polarization properties of substrate-mode holographic interconnects,” Appl. Opt. 29, 3848–3854 (1990). [CrossRef] [PubMed]
  23. M. Kato, Y.-T. Huang, R. K. Kostuk, “Multiplexed substrate-mode holograms,” J. Opt. Soc. Am. A 7, 1441–1447 (1990). [CrossRef]
  24. R. K. Kostuk, Y.-T. Huang, D. Hetherington, M. Kato, “Reduced alignment and chromatic sensitivity of holographic optical interconnects with substrate-mode holograms,” Appl. Opt. 28, 4939–4944 (1990). [CrossRef]
  25. F. Sauer, “Fabrication of diffractive–reflective optical interconnects for infrared operation based on total internal reflection,” Appl. Opt. 28, 386–388 (1989). [CrossRef] [PubMed]
  26. R. V. Balavkrishnan, “Transceiver technology and design,” in Digital Bus Handbook, J. D. Giacomo, ed. (McGraw-Hill, New York, 1990), Chap. 14, pp. 14.1–14.41.
  27. H. Kogelnik, “Coupled-wave theory for thick hologram gratings,” Bell Syst. Tech. J. 58, 2909–2947 (1969).
  28. S. K. Case, “Coupled-wave theory for multiply exposed thick holographic gratings,” J. Opt. Soc. Am. 65, 724–729 (1975). [CrossRef]
  29. T. J. Kim, E. W. Campbell, R. K. Kostuk, “Determination of average refractive index of spin-coated DCG films for HOE fabrication,” in Practical Holography VII: Imaging and Materials, S. A. Benton, ed., Proc. SPIE1914, 91–100 (1993).
  30. K.-Y. Tu, J.-H. Yeh, R. K. Kostuk, “Receiver considerations for free-space optical clock distribution systems,” in Optoelectronic Interconnects II, R. T. Chen, J. A. Neff, eds., Proc. SPIE2153, 86–93 (1994).
  31. J.-H. Yeh, R. K. Kostuk, K.-Y. Tu, “Board-level H-tree optical clock distribution with substrate-mode holograms,” J. Lightwave Technol. 13, 1566–1578 (1995). [CrossRef]
  32. H. Kressel, ed., Semiconductor Devices for Optical Communications (Springer-Verlag, Hidelberg, 1987).
  33. W. S. Lee, D. A. H. Spear, A. D. Smith, S. A. Wheeler, S. W. Bland, “Monolithic eight-channel photoreceiver array OEICs for HDWDM applications at 1.55 mm,” Electron. Lett. 28, 612–614 (1992). [CrossRef]
  34. VS8004/VS8005 2.5-Gb/s, 4-bit MuxyDemux chipset (Vitesse Semiconductor Corporation, 741 Calle Plans, Camarillo, Calif., 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited