OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 8 — Mar. 10, 1996
  • pp: 1212–1219

Digital Fourier optics

Haldun M. Ozaktas and David A. B. Miller  »View Author Affiliations


Applied Optics, Vol. 35, Issue 8, pp. 1212-1219 (1996)
http://dx.doi.org/10.1364/AO.35.001212


View Full Text Article

Enhanced HTML    Acrobat PDF (193 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Analog Fourier optical processing systems can perform important classes of signal processing operations in parallel, but suffer from limited accuracy. Digital–optical equivalents of such systems could be built that share many features of the analog systems while allowing greater accuracy. We show that the digital equivalent of any system consisting of an arbitrary number of lenses, filters, spatial light modulators, and sections of free space can be constructed. There are many possible applications for such systems as well as many alternative technologies for constructing them; this paper stresses the potential of free-space interconnected active-device-plane-based optoelectronic architectures as a digital signal processing environment. Implementation of the active-device planes through hybridization of optoelectronic components with silicon electronics should allow the realization of systems whose performance exceeds that of purely electronic systems.

© 1996 Optical Society of America

History
Original Manuscript: July 3, 1995
Revised Manuscript: October 27, 1995
Published: March 10, 1996

Citation
Haldun M. Ozaktas and David A. B. Miller, "Digital Fourier optics," Appl. Opt. 35, 1212-1219 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-8-1212


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  2. J. W. Goodman, “Four decades of optical information processing,” Opt. Photonics News 2(2), 11–15 (1991).
  3. H. M. Ozaktas, Y. Amitai, J. W. Goodman, “Comparison of system size for some optical interconnection architectures and the folded multi-facet architecture” Opt. Commun. 82, 225–228 (1991).
  4. H. M. Ozaktas, D. Mendlovic, “Multi-stage optical interconnection architectures with least possible growth of system size” Opt. Lett. 18, 296–298 (1993).
  5. D. Mendlovic, H. M. Ozaktas, “Optical-coordinate transformation methods and optical-interconnection architectures,” Appl. Opt. 32, 5119–5124 (1993).
  6. See, for example, the special issue on smart pixels, S. R. Forrest, H. S. Hinton, eds., IEEE J. Quantum Electron.29 (2), (1993).
  7. See, for example, D. A. B. Miller, “Computing with light,” in 1995 Yearbook of Science and the Future (Encyclopedia Britannica, Chicago, 1994), pp. 134–147.
  8. F. B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlong, R. J. Crisci, R. A. Novotny, H. S. Hinton, “Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays,” Appl. Opt.33, 1601–1618 (1994);H. S. Hinton, T. J. Cloonan, F. B. McCormick, A. L. Lentine, F. A. P. Tooley, “Free-space digital optical systems” Proc. IEEE 82, 1632–1649 (1994).
  9. K. S. Huang, C. B. Kuznia, B. K. Jenkins, A. A. Sawchuk, “Parallel architectures for digital optical cellular image processing” Proc. IEEE 82, 1711–1723 (1994).
  10. K. W. Goossen, J. E. Cunningham, W. Y. Jan, “GaAs 850 modulators solder-bonded to silicon” IEEE Photonics Tech-nol. Lett. 5, 776–778 (1993);K. W. Goosen, J. E. Cunningham, J. A. Walker, L. A. D’Asaro, S. P. Hui, P. Tseng, R. Leibenguth, D. Kossives, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS” IEEE Photonics Technol. Lett. 7, 360–362 (1995).
  11. F. Kiamilev, A. Krishnamoorthy, “Smart pixel designs for image processing,” in Photonics for Processors, Neural Networks, and Memories II, J. L. Horner, B. Javidi, S. T. Kowel, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2297, 37 (1994).
  12. A. K. Jain, Fundamentals of Digital Image Processing (Prentice-Hall, Englewood Cliffs, N.J., 1989), p. 505.
  13. S. G. Smith, P. B. Denyer, “Efficient bit-serial complex multiplication and sum-of-products computation using distributed arithmetic,” in Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, 1986 (IEEE, New York, 1986), pp. 2203–2206.
  14. R. F. Lyon, “Two’s complement pipeline multipliers” IEEE Trans. Commun. 24, 418–425 (1976).
  15. H. M. Ozaktas, J. W. Goodman, “Elements of a hybrid interconnection theory,” Appl. Opt. 33, 2968–2987 (1994).
  16. A. V. Krishnamoorthy, P. J. Marchand, F. E. Kiamilev, S. C. Esener, “Grain-size considerations for optoelectronic multistage interconnection networks,” Appl. Opt. 31, 5480–5507 (1992).
  17. M.J. Bastiaans, “Wigner distribution function and its application to first-order optics” J. Opt. Soc. Am. 69, 1710–1716 (1979).
  18. H. M. Ozaktas, D. Mendlovic, “Fractional Fourier optics” J. Opt. Soc. Am. A 12, 743–751 (1995).
  19. A. Papoulis, Signal Analysis (McGraw-Hill, New York, 1977), p. 289.
  20. M. Nazarathy, J. Shamir, “First-order optics—a canonical operator representation: lossless systems” J. Opt. Soc. Am. 72, 356–364 (1982).
  21. H. M. Ozaktas, B. Barshan, D. Mendlovic, L. Onural, “Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms” J. Opt. Soc. Am. A 11, 547–559 (1994).
  22. A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform” J. Opt. Soc. Am. A 10, 2181–2186 (1993).
  23. A. W. Lohmann, B. H. Soffer, “Relationships between the Radon–Wigner and fractional Fourier transformations” J. Opt. Soc. Am. A 11, 1798–1801 (1994).
  24. L. B. Almeida, “The fractional Fourier transform and time-frequency representations” IEEE Trans. Signal Process. 42, 3084–3091 (1994).
  25. A. C. McBride, F. H. Kerr, “On Namias’s fractional Fourier transforms” IMA J. Appl. Math. 39, 159–175 (1987).
  26. A. L. Lentine, K. W. Goossen, J. F. Walker, L. M. F. Chirovsky, L. A. D’Asaro, B. Tseng, R. E. Leibenguth, D. Kossives, D. Dahringer, D. D. Bacon, T. K. Woodward, “700 Mb/s operation of optoelectronic switching nodes comprised of flip-chip-bonded GaAs/AlGaAs MQW modulators on silicon CMOS circuitry,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), postdeadline paper CPD11.
  27. M. J. Little, J. Grinberg, “The 3-D computer: an integrated stack of WSI wafers,” in Wafer-Scale Integration (Kluwer, New York, 1988), Chap. 8.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited