OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 35, Iss. 8 — Mar. 10, 1996
  • pp: 1220–1233

Analysis of a microchannel interconnect based on the clustering of smart-pixel-device windows

D. R. Rolston, B. Robertson, H. S. Hinton, and D. V. Plant  »View Author Affiliations

Applied Optics, Vol. 35, Issue 8, pp. 1220-1233 (1996)

View Full Text Article

Enhanced HTML    Acrobat PDF (526 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A design analysis of a telecentric microchannel relay system developed for use with a smart-pixel-based photonic backplane is presented. The interconnect uses a clustered-window geometry in which optoelectronic device windows are grouped together about the axis of each microchannel. A Gaussian-beam propagation model is used to analyze the trade-off between window size, window density, transistor count per smart pixel, and lenslet f-number for three cases of window clustering. The results of this analysis show that, with this approach, a window density of 4000 windows/cm2 is obtained for a window size of 30 μm and a device plane separation of 25 mm. In addition, an optical power model is developed to determine the nominal power requirements of a 32 × 32 smart-pixel array as a function of window size. The power requirements are obtained assuming a complementary metal-oxide semiconductor inverter–amplifier and dual-rail multiple-quantum-well self-electro-optic-effect devices as the receiver stage of the smart pixel.

© 1996 Optical Society of America

Original Manuscript: June 15, 1995
Revised Manuscript: October 16, 1995
Published: March 10, 1996

D. R. Rolston, B. Robertson, H. S. Hinton, and D. V. Plant, "Analysis of a microchannel interconnect based on the clustering of smart-pixel-device windows," Appl. Opt. 35, 1220-1233 (1996)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. S. Hinton, “Photonic devices and systems major project,” Annual Rep. (Canadian Institute for Telecommunications Research, Montreal, Canada, 1994).
  2. R. Lord, S. Aujla, “High density backplane connector,” Interconnect. Technol. 10, 8–11 (1994).
  3. G. F. Watson, “Interconnections and packaging,” IEEE Spectrum 29(9), 69–71 (1992).
  4. H. S. Stone, J. Cocke, “Computer architecture in the1990s,” IEEE Computer 24(9), 30–38 (1991).
  5. T. Sakano, T. Matsumoto, K. Noguchi, “Three-dimensional board-to-board free-space optical interconnects and their application to the prototype multiprocessor system: COSINE-III,” Appl. Opt. 34, 1815–1822 (1995).
  6. B. Dhoedt, P. De Dobbelaere, J. Blondelle, P. Van Daele, P. Demeester, R. Baets, “Monolithic integration of diffractive lenses with LED arrays for board-to-board free space optical interconnect” J. Lightwave Technol. 13, 1065–1073 (1995).
  7. I. Redmond, E. Schenfeld, “Experimental results of a 64-channel, free-space optical interconnect network for massively parallel processing,” in Proceedings of the International Conference of Optical Computing, vol. 139 of IOP Conference Series (Institute of Physics, Bristol, UK, 1994), pp. 149–152.
  8. D. V. Plant, B. Robertson, H. S. Hinton, M. H. Ayliffe, G. C. Boisset, W. Hsiao, D. Kabal, N. H. Kim, Y. S. Liu, M. R. Otazo, D. Paulasek, A. Z. Shang, J. Simmons, W. M. Robertson, “A 4 × 4 VCSEL/MSM optical backplane demonstrater system,” presented at the Meeting of the Lasers and Electro-Optics Society, San Francisco, Calif., 30 October–2 November 1995, paper PD2.4.
  9. F. B. McCormick, A. L. Lentine, R. L. Morrison, J. M. Sasian, T. J. Cloonan, R. A. Novotny, M. G. Beckman, M. J. Wojcik, S. J. Hinterlong, D. B. Buchholz, “155 Mb/s operation of a FET-SEED free-space switching network” IEEE Photon. Technol. Lett. 6, 1479–1481 (1994).
  10. A. V. Krishnamoorthy, J. E. Ford, K. W. Goossen, J. A. Walker, A. L. Lentine, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leiben-guth, D. Kossives, D. Dahringer, L. M. F. Chirovsky, F. E. Kiamilev, G. F. Aplin, R. G. Rozier, D. A. B. Miller, “Implementation of a photonic page buffer based on GaAs MQW modulators bonded directly over active silicon VLSI circuits,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 2.1–2.3
  11. R. F. Carson, P. K. Seigal, D. C. Craft, M. L. Lovejoy, “Future manufacturing techniques for stacked MCM interconnections,” J. Metals 46(6), 51–55 (1994).
  12. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, 5465–5477 (1992).
  13. IEEE Standard for Futurebus+, Standard 896.2, P. M. Kelty, ed. (IEEE, New York, 1991).
  14. B. Robertson, G. C. Boisset, H. S. Hinton, Y. S. Liu, N. H. Kim, M. R. Otazo, D. Paulasek, D. V. Plant, D. R. Rolston, “Design of a lenslet array based free-space optical backplane demonstrater,” in Proceedings of the International Conference of Optical Computing, vol. 139 of IOP Conference Series (Institute of Physics, Bristol, UK, 1994), pp. 223–224.
  15. P. Belland, J. P. Crem, “Changes in the characteristics of a Gaussian beam weakly diffracted by a circular aperture,” Appl. Opt. 21, 522–527 (1982).
  16. K. W. Goossen, J. A. Walker, L. A. d’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS” IEEE Photon. Technol. Lett. 7, 360–362 (1993).
  17. MOSIS CMOSX 0.8 micron CMOS Vendor Rules, Version 1.4 for Hewlett-Packard n-well fabrication process (MOSIS, Marina del Ray, Calif., 1994).
  18. L. Geppert, “The new contenders” IEEE Spectrum 30(12), 20–25 (1993).
  19. M. Akta, S.-I. Karube, T. Sakamoto, T. Saito, S. Yoshida, T. Maeda, “A 250-Mb/s 32 × 32 CMOS Crosspoint LSI for ATM switching systems,” IEEE J. Solid-State Circuits 25, 1433–1439 (1990).
  20. D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. K. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, A. Z. Shang, L. Sun, “A FET-SEED smart pixel based optical backplane demonstrator” IEEE Photon. Technol. Lett. 7, 1057–1059 (1995).
  21. J. Jahns, S. J. Walker, “Two-dimensional array of diffractive microlenses fabricated by thin film deposition,” Appl. Opt. 29, 931–936 (1990).
  22. T. H. Szymanski, H. S. Hinton, “A smart pixel design for a dynamic free-space optical backplane,” presented at the IEEE Summer Topical Meeting on Smart Pixels, Lake Tahoe, Nevada, 11–13 July 1994.
  23. F. B. McCormick, T. J. Cloonan, F. A. P. Tooley, A. L. Lentine, J. M. Sasian, J. L. Brubaker, R. L. Morrison, S. L. Walker, R. J. Crisci, R. A. Novotny, S. J. Hinterlong, H. S. Hinton, E. Kerbis, “Six-stage digital free-space optical switching network using symmetric-self-electro-optic-effect devices,” Appl. Opt. 32, 5153–5171 (1993).
  24. D. A. B. Miller, “Novel analog self-electrooptic-effect devices” IEEE J. Quantum Electron. 29, 678–698 (1993).
  25. A. L. Lentine, L. M. F. Chirovsky, M. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, G. J. Przbylek, L. E. Smith, “Diode-clamped symmetric self-electro-optic effect devices with subpicojoule switching energies” Appl. Phys. Lett. 60, 1809–1811 (1992).
  26. T. K. Woodward, A. L. Lentine, L. M. F. Chirovsky, “Experimental sensitivity studies of diode-clamped FET-SEED smart pixel optical receivers” IEEE J. Quantum Electron. 30, 2319–2324 (1994).
  27. D. V. Plant, A. Z. Shang, M. R. Otazo, D. R. Rolston, B. Roberts, H. S. Hinton, “Design, modeling, and characterization of FET-SEED smart pixel transceiver arrays for optical backplanes” IEEE J. Quantum Electron. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited