OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 35, Iss. 8 — Mar. 10, 1996
  • pp: 1234–1239

Optical implementation of visible gray-image morphology with the visual-area-coding technique

Tsuyoshi Konishi, Shuji Taniguchi, Jun Tanida, and Yoshiki Ichioka  »View Author Affiliations


Applied Optics, Vol. 35, Issue 8, pp. 1234-1239 (1996)
http://dx.doi.org/10.1364/AO.35.001234


View Full Text Article

Enhanced HTML    Acrobat PDF (824 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel scheme of visible gray-image morphology with the visual-area-coding technique (VACT). The VACT is a technique of digitized analog–optical computing in which data are converted into visible coded patterns and processed with the visible form. Because the achievable operations in the VACT are identical to those of mathematical morphology, mathematical morphology is adapted to gray-image morphology with the VACT. Computer simulation and optical experiments of the several operations in mathematical morphology verify the correctness of the proposed technique. The processing capacity of the proposed method is estimated in terms of the space–bandwidth product.

© 1996 Optical Society of America

History
Original Manuscript: June 19, 1995
Revised Manuscript: September 25, 1995
Published: March 10, 1996

Citation
Tsuyoshi Konishi, Shuji Taniguchi, Jun Tanida, and Yoshiki Ichioka, "Optical implementation of visible gray-image morphology with the visual-area-coding technique," Appl. Opt. 35, 1234-1239 (1996)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-35-8-1234


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Tanida, Y. Ichioka, “Optical logic array processor using shadowgrams,” J. Opt. Soc. Am. 73, 800–809 (1983).
  2. K.-H. Brenner, A. Huang, N. Streibl, “Digital optical computing with symbolic substitution,” Appl. Opt. 25, 3054–3060 (1986).
  3. K.-S. Huang, B. K. Jenkins, A. A. Sawchuk, “Image algebra representation of parallel optical binary arithmetic,” Appl. Opt. 28, 1263–1278 (1989).
  4. M. Fukui, K. Kitayama, “Applications of image-logic algebra: wire routing and numerical data processings,” Appl. Opt. 31, 581–591 (1992).
  5. T. Konishi, J. Tanida, Y. Ichioka, “Visual-area coding technique (VACT): optical parallel implementation of fuzzy logic and its visualization with the digital halftoning process,” Appl. Opt. 34, 3097–3102 (1995).
  6. P. Maragos, “Tutorial on advantages in morphological image processing and analysis,” Opt. Eng. 26, 623–632 (1987).
  7. E. Ochoa, J. P. Allebach, D. W. Sweeney, “Optical median filtering using threshold decomposition,” Appl. Opt. 26, 253–260 (1987).
  8. J. M. Hereford, W. T. Rhodes, “Nonlinear optical image filtering by time sequential threshold decomposition,” Opt. Eng. 27, 274–279 (1988).
  9. Y. Li, A. Kostrzewski, D. H. Kim, G. Eichmann, “Compact parallel real-time programmable optical morphological image processor,” Opt. Lett. 14, 981–983 (1989).
  10. A. K. Cherri, A. A. S. Awwal, M. A. Karim, “Morphological transformation using optical symbolic substitution,” Micro wave Opt. Technol. Lett. 2, 282–285 (1989).
  11. P. Cambon, J.-L. de la Tocknaye Bougrenet, “Mathemati cal morphology processor using feroelectric liquid crystal light valves: principle,” Appl. Opt. 28, 3456–3460 (1989).
  12. B. D. Duncan, T.-C. Poon, R. J. Pieper, “Real-time nonlinear image processing using an active optical scanning technique,” Opt. Laser Technol. 23, 19–24 (1991).
  13. Z. Zhu, L. Liu, “Optical cellular continuous logic array for gray-scale image processing,” Appl. Opt. 32, 3676–3683 (1993).
  14. J. Gaecia, T. Szoplik, X. H. Wang, “Optoelectronic morpho logical image processor,” Opt. Lett. 18, 1952–1954 (1993).
  15. T. Szoplik, J. Garcia, C. Ferreira, “Rank-order and morphological enhancement ofimage details with an optoelec tronic processor,” Appl. Opt. 34, 267–275 (1995).
  16. L. Liu, “Optical implementation of parallel fuzzy logic,” Opt. Commun. 73, 183–187 (1989).
  17. F. Ono, “Binary rendition of continuous-tone pictures using binary patterns having similar Fourier spectra,” Trans. Inst. Electron. Commun. Eng. Jpn. Part D J68D, 686–693 (1985).
  18. P. Maragos, R. W. Schafer, “Morphological filters—Part II: their relations to median, order-statistic, and stack filters,” IEEE Trans. Acoust. Speech Signal Process. ASSP-35, 1170–1184 (1987).
  19. H. Tanigawa, T. Ichibashi, A. Nagata, “Hologram record ing on multicomponent monomer materials,” Jpn. J. Opt. 20, 227–231 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited