Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Photon migration through a turbid slab described by a model based on diffusion approximation. II. Comparison with Monte Carlo results

Not Accessible

Your library or personal account may give you access

Abstract

In our companion paper we presented a model to describe photon migration through a diffusing slab. The model, developed for a homogeneous slab, is based on the diffusion approximation and is able to take into account reflection at the boundaries resulting from the refractive index mismatch. In this paper the predictions of the model are compared with solutions of the radiative transfer equation obtained by Monte Carlo simulations in order to determine the applicability limits of the approximated theory in different physical conditions. A fitting procedure, carried out with the optical properties as fitting parameters, is used to check the application of the model to the inverse problem. The results show that significant errors can be made if the effect of the refractive index mismatch is not properly taken into account. Errors are more important when measurements of transmittance are used. The effects of using a receiver with a limited angular field of view and the angular distribution of the radiation that emerges from the slab have also been investigated.

© 1997 Optical Society of America

Full Article  |  PDF Article
More Like This
Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory

Daniele Contini, Fabrizio Martelli, and Giovanni Zaccanti
Appl. Opt. 36(19) 4587-4599 (1997)

Analytical approximate solutions of the time-domain diffusion equation in layered slabs

Fabrizio Martelli, Angelo Sassaroli, Yukio Yamada, and Giovanni Zaccanti
J. Opt. Soc. Am. A 19(1) 71-80 (2002)

Monte Carlo diffusion hybrid model for photon migration in a two-layer turbid medium in the frequency domain

George Alexandrakis, Thomas J. Farrell, and Michael S. Patterson
Appl. Opt. 39(13) 2235-2244 (2000)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.