Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity

Not Accessible

Your library or personal account may give you access

Abstract

We have measured the absorption coefficient of pure and salt water at 15 wavelengths in the visible and near-infrared regions of the spectrum using WETLabs nine-wavelength absorption and attenuation meters and a three-wavelength absorption meter. The water temperature was varied between 15 and 30 °C, and the salinity was varied between 0 and 38 PSU to study the effects of these parameters on the absorption coefficient of liquid water. In the near-infrared portion of the spectrum the absorption coefficient of water was confirmed to be highly dependent on temperature. In the visible region the temperature dependence was found to be less than 0.001 m-1/ °C except for a small region around 610 nm. The same results were found for the temperature dependence of a saltwater solution. After accounting for index-of-refraction effects, the salinity dependence at visible wavelengths is negligible. Salinity does appear to be important in determining the absorption coefficient of water in the near-infrared region. At 715 nm, for example, the salinity dependence was -0.00027 m-1/PSU. Field measurements support the temperature and salinity dependencies found in the laboratory both in the near infrared and at shorter wavelengths. To make estimates of the temperature dependence in wavelength regions for which we did not make measurements we used a series of Gaussian curves that were fit to the absorption spectrum in the visible region of the spectrum. The spectral dependence on temperature was then estimated based on multiplying the Gaussians by a fitting factor.

© 1997 Optical Society of America

Full Article  |  PDF Article
More Like This
Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region

Rüdiger Röttgers, David McKee, and Christian Utschig
Opt. Express 22(21) 25093-25108 (2014)

Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range

James M. Sullivan, Michael S. Twardowski, J. Ronald V. Zaneveld, Casey M. Moore, Andrew H. Barnard, Percy L. Donaghay, and Bruce Rhoades
Appl. Opt. 45(21) 5294-5309 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.