Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Characterization and modeling of drift noise in Fourier transform spectroscopy: implications for signal processing and detection limits

Not Accessible

Your library or personal account may give you access

Abstract

A theoretical analysis of long-term drift noise in Fourier transform spectroscopy is presented. Theoretical predictions are confirmed by experiment. Fractional Brownian motion is employed as a stochastic process model for drift noise. A formulation of minimum detectable signal is given that properly accounts for drift noise. The spectral exponent of the low-frequency drift noise is calculated from experimental data. A frequency-dependent optimal spectrum averaging time is found to exist beyond which the minimum detectable signal increases indefinitely. It is also shown that the minimum detectable signal in an absorbance or transmission measurement degrades indefinitely with the time elapsed since background spectrum acquisition.

© 1997 Optical Society of America

Full Article  |  PDF Article
More Like This
Visual signal detectability with two noise components: anomalous masking effects

Arthur E. Burgess, Xing Li, and Craig K. Abbey
J. Opt. Soc. Am. A 14(9) 2420-2442 (1997)

Fourier-transform spectroscopy using liquid-crystal technology

David J. Funk and David S. Moore
Opt. Lett. 22(23) 1799-1801 (1997)

Signal model of noise in open-loop fiber-optic gyros

K. He, W. Ye, and Z. He
Opt. Lett. 22(23) 1742-1744 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved