Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Thermal decay of fiber Bragg gratings of positive and negative index changes formed at 193 nm in a boron-codoped germanosilicate fiber

Not Accessible

Your library or personal account may give you access

Abstract

A complex grating decay process is observed at elevated temperatures as predicted by a recently proposed three-energy-level model. We have also measured thermal stability of fiber gratings of both positive and negative index changes in a boron-codoped germanosilicate fiber in order to characterize the energy levels of the system and to predict grating lifetimes. The negative index gratings are found to be able to operate at 300 °C for more than 25 years without significant degradation.

© 1997 Optical Society of America

Full Article  |  PDF Article
More Like This
Analysis of thermal decay and prediction of operational lifetime for a type I boron-germanium codoped Fiber Bragg grating

Suchandan Pal, Jharna Mandal, Tong Sun, and Kenneth T. V. Grattan
Appl. Opt. 42(12) 2188-2197 (2003)

Comparison of isochronal and isothermal decays of Bragg gratings written through continuous-wave exposure of an unloaded germanosilicate fiber

Dominique Razafimahatratra, Pierre Niay, Marc Douay, Bertrand Poumellec, and Isabelle Riant
Appl. Opt. 39(12) 1924-1933 (2000)

Bragg grating fabrication in germanosilicate fibers by use of near-UV light: a new pathway for refractive-index changes

D. S. Starodubov, V. Grubsky, Jack Feinberg, B. Kobrin, and S. Juma
Opt. Lett. 22(14) 1086-1088 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved