OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 1 — Jan. 1, 1998
  • pp: 170–180

Fiber-Optic Probes with Improved Excitation and Collection Efficiency for Deep-UV Raman and Resonance Raman Spectroscopy

L. Shane Greek, H. Georg Schulze, Michael W. Blades, Charles A. Haynes, Karl-Friedrich Klein, and Robin F. B. Turner  »View Author Affiliations


Applied Optics, Vol. 37, Issue 1, pp. 170-180 (1998)
http://dx.doi.org/10.1364/AO.37.000170


View Full Text Article

Acrobat PDF (225 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The ability of ultraviolet resonance Raman spectroscopy (UVRRS) to determine structural, environmental, and analytical information concerning low-concentration aqueous biomolecules makes it a powerful bioanalytical and biophysical technique. Unfortunately, its utility has been limited by experimental requirements that preclude <i>in situ</i> or <i>in vivo</i> studies in most cases. We have developed the first high-performance fiber-optic probes suitable for long-term use in pulsed UVRRS applications in the deep- UV (DUV, 205–250 nm). The probes incorporate recently developed improved ultraviolet (IUV) fibers that do not exhibit the rapid solarization and throughput decay that previously hampered the use of optical fibers for delivering pulsed, DUV light. A novel 90° mirrored collection geometry is used to overcome the inner-filtering effects that plague flush-probe geometries. The IUV fibers are characterized with respect to their efficacy at transmitting pulsed, DUV laser light, and prototype probes are used to obtain pulsed UVRRS data of aromatic amino acids, proteins, and hormones at low concentrations with 205–240-nm pulsed excitation. Efficient probe geometries and fabrication methods are presented. The performance of the probes in examining resonance-enhanced Raman signals from absorbing chromophores is investigated, and the optimal excitation wavelength is shown to be significantly red-shifted from the maximum of the resonance Raman enhancement profile. Generally applicable procedures for determining optimal experimental conditions are also introduced.

© 1998 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(300.6450) Spectroscopy : Spectroscopy, Raman

Citation
L. Shane Greek, H. Georg Schulze, Michael W. Blades, Charles A. Haynes, Karl-Friedrich Klein, and Robin F. B. Turner, "Fiber-Optic Probes with Improved Excitation and Collection Efficiency for Deep-UV Raman and Resonance Raman Spectroscopy," Appl. Opt. 37, 170-180 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-1-170


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. A. Asher, “UV resonance Raman spectroscopy for analytical, physical, and biophysical chemistry: Part 1,” Anal. Chem. 65, 59A–66A (1993).
  2. S. A. Asher, “UV resonance Raman spectroscopy for analytical, physical, and biophysical chemistry: Part 2,” Anal. Chem. 65, 201A–210A (1993).
  3. J. C. Austin, K. R. Rodgers, and T. G. Spiro, “Protein structure from ultraviolet resonance Raman spectroscopy,” in Methods in Enzymology, J. F. Riordan and B. L. Vallee, eds. (Academic, San Diego, Calif., 1993), Vol. 226, pp. 374–396.
  4. J. C. Austin, T. Jordan, and T. G. Spiro, “Ultraviolet resonance Raman studies of proteins and related model compounds,” in Biomedical Spectroscopy, Vol. 20A of Advances in Spectroscopy, R. J. H. Clark and R. E. Hester, eds. (Wiley, West Sussex, UK, 1993), pp. 55–127.
  5. T. J. Thamann, “Probing local protein structure with ultraviolet resonance Raman spectroscopy,” in Spectroscopic Methods for Determining Protein Structure in Solution, H. A. Havel, ed. (VCH, New York, 1996), pp. 96–134.
  6. S. P. A. Fodor, R. P. Rava, T. R. Hays, and T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107, 1520–1529 (1985).
  7. S. P. A. Fodor and T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of DNA with 200–266 nm laser excitation,” J. Am. Chem. Soc. 108, 3198–3205 (1986).
  8. I. Mukerji, M. C. Schiber, T. G. Spiro, and J. R. Fresco, “A UV resonance Raman study of d(A+-G)10, a single-stranded helix without stacked or paired bases,” Biochemistry 34, 14300–14303 (1995).
  9. S. A. Asher, M. Ludwig, and C. R. Johnson, “UV resonance Raman excitation profiles of the aromatic amino acids,” J. Am. Chem. Soc. 108, 3186–3197 (1986).
  10. C. R. Johnson, M. Ludwig, S. O’Donnell, and S. A. Asher, “UV resonance Raman spectroscopy of the aromatic amino acids and myoglobin,” J. Am. Chem. Soc. 106, 5008–5010 (1984).
  11. R. P. Rava and T. G. Spiro, “Resonance enhancement in the ultraviolet Raman spectra of aromatic amino acids,” J. Phys. Chem. 89, 1856–1861 (1985).
  12. H. Georg Schulze, “The development of a fiber-optic probe for the in vitro resonance Raman spectroscopy of neurotransmitters,” Ph.D. dissertation (University of British Columbia, Vancouver, British Columbia, Canada, 1996).
  13. R. A. Copeland and T. G. Spiro, “Secondary structure determination in proteins from deep (192–222 nm) ultraviolet Raman spectroscopy,” Biochemistry 26, 2134–2139 (1987).
  14. S. Song and S. A. Asher, “UV resonance Raman studies of peptide conformation in poly(l-lysine), poly(l-glutamic acid), and model complexes: the basis for protein secondary structure determinations,” J. Am. Chem. Soc. 111, 4295–4305 (1989).
  15. R. Manoharan, Y. Wang, N. Boustany, J. F. Brennan III, J. J. Baraga, R. R. Dasari, J. Van Dam, S. Singer, and M. S. Feld, “Raman spectroscopy for cancer detection: instrument development and tissue diagnosis,” in Biomedical Optoelectronic Devices and Systems II, N. I. Croitoru, N. Kroo, M. Miyagi, R. Pratesi, and J. M. Wolfrum, eds., Proc. SPIE 2328, 128–132 (1994).
  16. R. Tuma, J. H. K. Bamford, D. H. Bamford, M. P. Russell, and G. J. Thomas, “Structure, interactions, and dynamics of PRD1 virus: I. Coupling of subunit folding and capsid assembly,” J. Mol. Biol. 257, 87–101 (1996).
  17. X. Zhao, D. Lu, S. Jiang, C. Mao, Y. Fan, C. An, and Z. Li, “Interaction between intercalation type anticancer drugs and DNA studied by ultraviolet resonance Raman spectroscopy,” Sci. China Ser. B 38, 555–563 (1995).
  18. Y. Wang and H. E. Van Wart, “Raman and resonance Raman spectroscopy,” in Methods in Enzymology, J. F. Riordan and B. L. Vallee, eds. (Academic, San Diego, Calif., 1993), Vol. 226, pp. 319–396.
  19. S. D. Schwab and R. L. McCreery, “Versatile, efficient Raman sampling with fiber optics,” Anal. Chem. 56, 2199–2204 (1984).
  20. R. L. McCreery, M. Fleischmann, and P. Hendra, “Fiber optic probe for remote Raman spectrometry,” Anal. Chem. 55, 146–148 (1983).
  21. L. S. Greek, H. G. Schulze, C. A. Haynes, M. W. Blades, and R. F. B. Turner, “Rational design of fiber-optic probes for visible and pulsed-ultraviolet resonance Raman spectroscopy,” Appl. Opt. 35, 4086–4095 (1996).
  22. P. Plaza, N. Q. Dao, M. Jouan, H. Fevrier, and H. Saisse, “Simulation et optimisation des capteurs à fibres optiques adjacentes,” Appl. Opt. 25, 3448–3454 (1986).
  23. Z. Y. Zhu and M. C. Yappert, “Determination of effective depth and equivalent pathlength for a single-fiber fluorometric sensor,” Appl. Spectrosc. 46, 912–918 (1992).
  24. Z. Y. Zhu and M. C. Yappert, “Determination of effective depth for double-fiber fluorometric sensors,” Appl. Spectrosc. 46, 919–924 (1992).
  25. S. M. Angel and M. L. Myrick, “Wavelength selection for fiber optic Raman spectroscopy. Part 1,” Appl. Opt. 9, 1350–1352 (1990).
  26. M. L. Myrick, S. M. Angel, and R. Desiderio, “Comparison of some fiber optic configurations for measurement of luminescence and Raman scattering,” Appl. Opt. 29, 1333–1344 (1990).
  27. M. Jiaying and L. Zhong, “A low stray light Raman microprobe using optical fibers and GRIN lenses,” Appl. Spectrosc. 45, 1302–1304 (1991).
  28. M. L. Myrick and S. M. Angel, “Elimination of background in fiber-optic Raman measurements,” Appl. Spectrosc. 44, 565–570 (1990).
  29. T. F. Cooney, H. T. Skinner, and S. M. Angel, “Comparative study of some fiber-optic remote Raman probe designs. Part I: Model for liquids and transparent solids,” Appl. Spectrosc. 50, 836–848 (1996).
  30. T. F. Cooney, H. T. Skinner, and S. M. Angel, “Comparative study of some fiber-optic remote Raman probe designs. Part II: Tests of single-fiber, lensed, and flat- and bevel-tip multi fiber probes,” Appl. Spectrosc. 50, 849–860 (1996).
  31. P. Karlitschek, K. F. Klein, and G. Hillrichs, “Suppression of solarization effects in optical fibers for 266-nm laser radiation,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 2966, 620–625 (1997).
  32. R. A. Weeks, “The many varieties of E′-centers: a review,” J. Non Cryst. Solids 179, 1–9 (1994).
  33. H. Fabian, U. Grzesik, K.-H. Wörner, and K. F. Klein, “Optical fibers for UV applications,” in Glasses for Optoelectronics II, G. C. Righini, ed., Proc. SPIE 1513, 168–173 (1991).
  34. P. Karlitschek, G. Hillrichs, and K. F. Klein, “Photodegradation and nonlinear effects in optical fibers induced by pulsed UV-laser radiation,” Opt. Commun. 116, 219–230 (1995).
  35. K. F. Klein, G. Hillrichs, P. Karlitschek, and K. Mann, “Possibilities and limitations for the transmission of excimer laser radiation,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 2966, 564–573 (1997).
  36. R. S. Taylor, K. E. Leopold, R. K. Brimacombe, and S. Mihailov, “Dependence of the damage and transmission properties of fused silica fibers on the excimer laser wavelength,” Appl. Opt. 27, 3124–3133 (1988).
  37. H. Hitzler, N. Leclerc, K. F. Klein, K. O. Greulich, and J. Wolfrum, “Optical fiber transmission of excimer laser pulses,” in Excimer Lasers and Applications, D. Basting, ed., Proc. SPIE 1023, 249–252 (1988).
  38. D. H. Levy, K. K. Gleason, M. Rothschild, and J. H. C. Sedlacek, “The role of hydrogen in excimer-laser-induced damage of fused silica,” J. Appl. Phys. 73, 2809–2815 (1993).
  39. L. Skuja, “The origin of the intrinsic 1.9 eV luminescence band in glassy SiO2,” J. Non Cryst. Solids 179, 51–69 (1994).
  40. H. Hitzler, C. Pfleiderer, N. Leclerc, J. Wolfrum, K. O. Greulich, and H. Fabian, “KrF-laser irradiation induced defects in all silica optical fibers,” J. Non Cryst. Solids 149, 107–114 (1994).
  41. P. Karlitschek, K. F. Klein, G. Hillrichs, and U. Grzesik, “Improved UV-fiber for 193-nm excimer laser applications,” in Biomedical Fiber Optics, A. Katzir and J. A. Harrington, eds., Proc. SPIE 2677, 127–134 (1996).
  42. K. F. Klein, G. Hillrichs, P. Karlitschek, and U. Grzesik, “Improved optical fibers for excimer laser applications,” presented at LASERmed 95, Munich, June 1995.
  43. R. D. McLachlan, G. L. Jewett, and J. C. Evans, “Fiber optic probe for sensitive Raman analysis,” U.S. patent 4,573,761 (4 March 1986).
  44. A. C. Albrecht and M. C. Hutley, “On the dependence of vibrational Raman intensity on the wavelength of incident light,” J. Chem. Phys. 55, 4438–4443 (1971).
  45. C. Su, Y. Wang, and T. G. Spiro, “Saturation effects on ultraviolet resonance Raman intensities: excimer/YAG laser comparison and aromatic amino acid cross-sections,” J. Raman Spectrosc. 21, 435–440 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited