OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 10 — Apr. 1, 1998
  • pp: 1883–1889

Solarization of glass substrates during thin-film deposition

Ludovic Escoubas, Alexandre Gatto, Gérard Albrand, Pierre Roche, and Mireille Commandré  »View Author Affiliations


Applied Optics, Vol. 37, Issue 10, pp. 1883-1889 (1998)
http://dx.doi.org/10.1364/AO.37.001883


View Full Text Article

Enhanced HTML    Acrobat PDF (171 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate that solarization occurs in glass substrates during thin-film deposition and that it induces high absorption near the surface of the substrate. Solarization has been observed especially in ion-plating deposition. We show that the solarization of the substrate is caused by electromagnetic radiation emitted from the material to be evaporated. The radiation is due to the energy losses of the heating beam of electrons (bremsstrahlung radiation). Multicomponent glasses such as BK7 are much more sensitive to solarization than fused-silica substrates. The photoinduced high absorption can be partially reversed by thermal annealing.

© 1998 Optical Society of America

OCIS Codes
(300.1030) Spectroscopy : Absorption
(310.0310) Thin films : Thin films

History
Original Manuscript: May 21, 1997
Revised Manuscript: October 2, 1997
Published: April 1, 1998

Citation
Ludovic Escoubas, Alexandre Gatto, Gérard Albrand, Pierre Roche, and Mireille Commandré, "Solarization of glass substrates during thin-film deposition," Appl. Opt. 37, 1883-1889 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-10-1883


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Ristau, X. C. Dang, J. Ebert, “Interface and bulk absorption of oxide layers and correlation to damage threshold at 1.06 μm,” Natl. Bur. Stand. (U.S.) Spec. Publ. 727, 298–312 (1984).
  2. J. Dijon, T. Pioroux, C. Desrumeaux, “Nano absorbing centers: a key point in the laser damage of thin films,” in Annual Symposium on Optical Materials for High Power Lasers, Laser Induced Damage in Optical Materials (NIST, Boulder Colo., 1996).
  3. M. D. Feit, A. M. Rubenchik, D. R. Faux, R. A. Riddle, D. C. Eder, B. M. Penetrante, D. Milam, F. Y. Genin, M. R. Kozlowski, “Modeling of laser damage initiated by surface contamination,” in Annual Symposium on Optical Materials for High Power Lasers, Laser Induced Damage in Optical Materials (NIST, Boulder, Colo., 1996).
  4. A. C. Boccara, D. Fournier, W. B. Jackson, N. M. Amer, “Sensitive photothermal deflection technique for measuring absorption in optically thin media,” Opt. Lett. 5, 377–379 (1980). [CrossRef] [PubMed]
  5. M. Commandré, P. Roche, G. Albrand, E. Pelletier, “Photothermal deflection spectroscopy for the study of thin films and optical coatings: Measurement of absorption losses and detection of photo-induced changes,” in Optical Thin Films and Applications, R. Herrmann, ed., Proc. SPIE1270, 82–93 (1990). [CrossRef]
  6. E. Welsch, D. Ristau, “Photothermal measurements on optical thin films,” Appl. Opt. 34, 7239–7253 (1995). [CrossRef] [PubMed]
  7. M. Commandré, P. Roche, J. P. Borgogno, G. Albrand, “Absorption mapping for characterization of glass surfaces,” Appl. Opt. 34, 2372–2379 (1995). [CrossRef]
  8. M. Commandré, P. Roche, “Characterization of optical coatings by photothermal deflection,” Appl. Opt. 35, 5021–5034 (1996). [CrossRef]
  9. M. Commandré, P. Roche, “Characterization of absorption by photothermal deflection,” in Thin Films for Optical Systems, F. Flory, ed., Vol. 49 of Optical Engineering Series (Marcel Dekker, New York, 1995), pp. 329–365.
  10. M. Reichling, E. Welsch, A. Duparré, E. Matthias, “Photothermal microscopy defects in ZrO2 and MgF2 single-layer films,” Opt. Eng. 33, 1334–1342 (1994). [CrossRef]
  11. P. Roche, M. Commandré, L. Escoubas, J. P. Borgogno, G. Albrand, B. Lazaridés, “Substrate effects on absorption of coated surfaces,” Appl. Opt. 35, 5059–5066 (1996). [CrossRef] [PubMed]
  12. L. Escoubas, P. Roche, M. Commandré, “Near-surface and interface absorption in coated substrates,” in Specification, Production, and Testing of Optical Components and Systems, A. E. Gee, J.-F. Houee, eds., Proc. SPIE2775, 380–391 (1996). [CrossRef]
  13. J. S. Stroud, “Color centers in a cerium-containing silicate glass,” J. Chem. Phys. 37, 836–841 (1962). [CrossRef]
  14. S. Gebala, I. Wilk, “A contribution to the study of radiation-induced changes in some sort of glass,” Opt. Appl. 11, 321–326 (1981).
  15. H. Bach, N. Neuroth, eds., The Properties of Optical Glass, Schott Series on Glass Ceramics (Springer-Verlag, Berlin, 1995).
  16. W. T. White, M. A. Henessian, M. J. Weber, “Photothermal-lensing measurements of two-photon absorption and two-photon-induced color centers in borosilicate glasses at 532 nm,” J. Opt. Soc. Am. B 2, 1402–1408 (1985). [CrossRef]
  17. D. L. Griscom, “Defect structure of glasses,” J. Non-Cryst. Solids 73, 51–77 (1985). [CrossRef]
  18. G. Hillrichs, M. Dressel, H. Hack, R. Kunstmann, W. Neu, “Transmission of XeCl excimer laser pulses through optical fibers: dependence on fiber and laser parameters,” Appl. Phys. B 54, 208–215 (1992). [CrossRef]
  19. R. K. Brimacombe, R. S. Taylor, K. E. Leopold, “Dependence of the nonlinear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66, 4035–4040 (1989). [CrossRef]
  20. P. Karlitschek, K.-F. Klein, G. Hillrichs, “Suppression of solarization effects in optical fibers for 266 nm laser radiation,” in Annual Symposium on Optical Materials for High Power Lasers, Laser Induced Damage in Optical Materials (NIST, Boulder, Colo., 1996).
  21. K.-F. Klein, G. Hillrichs, P. Karlitschek, K. Mann, “Possibilities and limits of optical fibers for the transmission of excimer laser radiation,” in Annual Symposium on Optical Materials for High Power Lasers, Laser Induced Damage in Optical Materials (NIST, Boulder, Colo., 1996).
  22. R. M. Atkins, V. Mizrahi, T. Erdogan, “248 nm induced UV spectral changes in optical fiber preform cores: support for a color center model of photosensitivity,” Electron. Lett. 29, 385–386 (1993). [CrossRef]
  23. P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, F. Cochet, B. Leuenberger, “Tension increase correlated to refractive index change in fibers containing UV-written Bragg gratings,” Opt. Lett. 20, 1346–1348 (1995). [CrossRef] [PubMed]
  24. C. Y. Li, J. Chisham, M. Andrews, S. I. Najafi, J. D. Mackenzie, N. Peyghambarian, “Sol-gel integrated optical coupler by UV-light imprinting,” Electron. Lett. 31, 271–272 (1995). [CrossRef]
  25. P. Coudray, J. Chisham, A. Malek-Tabrizi, C. Y. Li, M. Andrews, N. Peyghambarian, S. I. Najafi, “Ultra violet light imprinted sol-gel silica glass waveguide devices on silicon,” Opt. Commun. 128, 19–22 (1996). [CrossRef]
  26. B. Speit, E. Rädlein, G. H. Frischat, A. J. Marker, J. S. Hayden, “Radiation resistant optical glasses,” Nucl. Instrum. Methods Phys. Res. B 65, 384–386 (1992). [CrossRef]
  27. “Radiation shielding glasses. Radiation shielding windows,” Technical Note (Schott Optical Glass, Inc., Mainz, Germany, 1972).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited