Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Low-coherence heterodyne photon correlation spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

Photon correlation spectroscopy (PCS) is routinely used to investigate the dynamics of colloidal particles undergoing Brownian motion. This technique is applicable to low-density colloidal suspensions in which the effects of multiple light scattering are minimal. We introduce a new low-coherence heterodyne PCS technique that allows direct investigation of colloidal suspensions of higher concentration than previously accessible with standard PCS. In this technique, low-coherence optical heterodyne interferometry is used to suppress multiple light scattering, allowing preferential detection of single-scattering events.

© 1998 Optical Society of America

Full Article  |  PDF Article
More Like This
Using dynamic low-coherence interferometry to image Brownian motion within highly scattering media

D. A. Boas, K. K. Bizheva, and A. M. Siegel
Opt. Lett. 23(5) 319-321 (1998)

Photon correlation spectroscopy on flowing polydisperse fluid-particle systems: theory

Ralf Weber and Gustav Schweiger
Appl. Opt. 37(18) 4039-4050 (1998)

Dynamics of interacting Brownian particles in concentrated colloidal suspensions

Hui Xia, Katsuhiro Ishii, Toshiaki Iwaii, Hongjian Li, and Bingchu Yang
Appl. Opt. 47(9) 1257-1262 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved