OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 12 — Apr. 20, 1998
  • pp: 2390–2393

Ultrabroadband Operation of a Cr4+: Forsterite Laser by Use of a Spatially Dispersed Resonator

Valerii V. Ter-Mikirtychev, Iain T. McKinnie, and Donald M. Warrington  »View Author Affiliations


Applied Optics, Vol. 37, Issue 12, pp. 2390-2393 (1998)
http://dx.doi.org/10.1364/AO.37.002390


View Full Text Article

Acrobat PDF (147 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ultrabroadband (half-width of 88 nm) nanosecond Cr4+:forsterite oscillation was achieved simultaneously in the 1170–1340-nm range (1085 cm−1) by use of a spatially dispersed resonator with an intracavity prism pair. The laser demonstrates 4.8% real pump-to-laser efficiency. The oscillation build-up time for different spectral components is around 20 ns and varies by only 2.5 ns in the 1190–1260-nm region, which indicates that the ultrabroadband laser represents a complex multifrequency laser system with nonlinear spectral mode interaction.

© 1998 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3410) Lasers and laser optics : Laser resonators
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers

Citation
Valerii V. Ter-Mikirtychev, Iain T. McKinnie, and Donald M. Warrington, "Ultrabroadband Operation of a Cr4+: Forsterite Laser by Use of a Spatially Dispersed Resonator," Appl. Opt. 37, 2390-2393 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-12-2390


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. B. Danailov and I. P. Christov, “A novel method of ultrabroadband laser generation,” Opt. Commun. 73, 235–238 (1989).
  2. M. B. Danailov and I. P. Christov, “Ultrabroadband laser using prism-based ‘spatially-dispersive’ resonator,” Appl. Phys. B 51, 300–302 (1990).
  3. M. B. Danailov and I. P. Christov, “Amplification of spatially-dispersed ultrabroadband laser pulses,” Opt. Commun. 77, 397–401 (1990).
  4. V. H. Astinov, “Spatial modulation of the pump in the ultrabroadband dye laser with a ‘spatially-dispersive’ resonator,” Opt. Commun. 118, 297–301 (1995).
  5. T. T. Basiev, P. G. Zverev, V. V. Fedorov, and S. B. Mirov, “Solid-state laser with superbroadband or control generation spectrum,” in Solid State Lasers and Nonlinear Crystals, G. J. Quarles, L. Esterowitz, L. K. Chang, and M. M. Sobey, eds., Proc. SPIE 2379, 54–61 (1995).
  6. V. V. Ter-Mikirtychev and T. Tsuboi, “Superbroadband laser using LiF:F2+* color center crystals,” in Proceedings of the Annual Meeting of the Japanese Physical Society, (Japanese Physical Society, Yamaguchi, Japan, 1996), p. 332.
  7. V. V. Ter-Mikirtychev and T. Tsuboi, “Ultrabroadband LiF:F2+* color center laser using two-prism spatially-dispersive resonator,” Opt. Commun. 137, 74–76 (1997).
  8. V. V. Ter-Mikirtychev, “Ultrabroadband Al2O3:Ti3+ laser,” in Tunable Solid State Lasers, W. Strek, E. Lukowiak, and B. Nissen-Sobocinska, eds., Proc. SPIE 3176, 84–88 (1997).
  9. V. V. Ter-Mikirtychev, “Ultrabroadband oscillation of Ti3+:sapphire laser,” in Advanced Solid State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 177–181.
  10. M. B. Danailov and I. Y. Milev, “Simultaneous multiwavelength operation of Nd:YAG laser,” Appl. Phys. Lett. 61, 746–748 (1992).
  11. I. T. McKinnie, L. A. W. Gloster, A. M. L. Oien, and T. A. King, “The role of active ion concentration in tuned chromium forsterite oscillators,” Opt. Commun. 129, 49–56 (1996).
  12. V. Petricevic, S. K. Gayen, and R. R. Alfano, “Laser action in chromium-activated forsterite for near infrared excitation,” Appl. Opt. 27, 4162–4163 (1988).
  13. H. R. Verdun, L. M. Thomas, D. M. Andrauskas, T. McCollum, and A. Pinto, “Chromium-doped forsterite laser pumped with 1064 nm radiation,” Appl. Phys. Lett. 53, 2593–2595 (1988).
  14. T. J. Carrig and C. R. Pollock, “Tunable, cw operation of a multiwatt forsterite laser,” Opt. Lett. 16, 1662–1664 (1991).
  15. E. G. Behrens, M. G. Jani, R. C. Powell, H. R. Verdun, and A. Pinto, “Lasing properties of chromium-aluminium-doped forsterite pumped with an alexandrite laser,” IEEE J. Quantum Electron. 27, 2042–2049 (1991).
  16. V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, and Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
  17. I. T. McKinnie, A. J. Tiffany, and D. M. Warrington, “Single frequency, coupled cavity chromium forsterite laser,” in Advanced Solid State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D. C., 1996), pp. 72–75.
  18. G. Szabo and Z. Bor, “Broadband frequency doubler for femtosecond pulses,” Appl. Phys. B 50, 51–54 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited