Improved Standard Beams with Application to Reverse Radiation Pressure
Applied Optics, Vol. 37, Issue 12, pp. 2435-2440 (1998)
http://dx.doi.org/10.1364/AO.37.002435
Acrobat PDF (198 KB)
Abstract
Recently a so-called standard beam description of Gaussian beams was introduced [J. Opt. Soc. Am. A 11, 2503 (1994)]. However, it was afterward observed [Appl. Opt.35, 2702 (1996)] that this description exhibits a finite radius of convergence, limiting its range of applicability. We introduce an improved standard beam description with an infinite radius of convergence. The utility of this improved description is illustrated by evaluation of radiation pressure forces under severe focusing conditions.
© 1998 Optical Society of America
OCIS Codes
(230.0230) Optical devices : Optical devices
Citation
Hubert Polaert, Gérard Gréhan, and Gérard Gouesbet, "Improved Standard Beams with Application to Reverse Radiation Pressure," Appl. Opt. 37, 2435-2440 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-12-2435
Sort: Year | Journal | Reset
References
- A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
- A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19(8), 283–285 (1971).
- G. Roosen, “La lévitation optique de sphères,” J. Can. Phys. 57(9), 1260–1279 (1979).
- J. B. Snow, S. X. Qian, and R. K. Chang, “Stimulated Raman scattering from individual water and ethanol droplets at morphology-dependent resonances,” Opt. Lett. 10, 37–39 (1985).
- R. E. Preston, T. R. Littieri, and H. G. Semerjian, “Characterization of single levitated droplets by Raman spectroscopy,” Langmuir 1(3), 365–367 (1985).
- B. J. Ackerson and A. H. Chowdhury, “Radiation pressure as a technique for manipulating the particle order in colloidal suspension,” Faraday Discuss. Chem. Soc. 83, 309–316 (1987).
- N. Y. Misconi, J. P. Oliver, K. F. Ratcliff, E. T. Rusk, and W. X. Wang, “Light scattering by laser levitated particles,” Appl. Opt. 29, 2276–2281 (1990).
- N. Roth, K. Anders, and A. Frohn, “Determination of size, evaporation rate, and freezing of water droplets using light scattering and radiation pressure,” Part. Part. Syst. Charact. 11(3), 207–211 (1994).
- G. Gréhan and G. Gouesbet, “Optical levitation of a single particle to study the theory of quasi-elastic scattering of light,” Appl. Opt. 19, 2485–2487 (1980).
- G. Gréhan, F. Guilloteau, and G. Gouesbet, “Optical validation of the generalized Lorenz-Mie theory,” Part. Part. Syst. Charact. 7(4), 248–249 (1990).
- F. Guilloteau, G. Gréhan, and G. Gouesbet, “Optical levitation experiments to assess the validity of the generalized Lorenz–Mie theory,” Appl. Opt. 31, 2942–2951 (1992).
- A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
- K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature (London) 365, 721–727 (1993).
- S. C. Kuo and M. P. Scheetz, “Force of single kinesin molecule measured with optical tweezers,” Science 260, 232–234 (1993).
- T. T. Perkins, S. R. Quake, D. E. Smith, and S. Chut, “Relaxation of a single DNA molecule observed by optical microscopy,” Science 264, 822–826 (1994).
- J. E. Molloy, J. E. Burns, J. C. Sparrow, and R. T. Tregear, “Single-molecule mechanics of heavy meromyosin and S1 interacting with rabbit or drosophila actins using optical tweezers,” Biophys. J. 68, 298s–305s (1995).
- G. Roosen, B. Delaunay, and C. Imbert, “Etude de la pression de radiation exercée par un faisceau lumineux sur une sphère réfringente,” J. Optics (Paris) 8(3), 181–187 (1977).
- A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
- J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4599 (1989).
- G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).
- G. Gouesbet and G. Gréhan, “Sur la généralisation de la théorie de Lorenz-Mie,” J. Optics (Paris) 13(2), 97–103 (1982).
- J. A. Lock, “Contribution of high-order rainbows to the scattering of a Gaussian laser beam by a spherical particle,” J. Opt. Soc. Am. A 10, 693–706 (1993).
- W. H. Wright, G. J. Sonek, and M. W. Berns, “Radiation trapping force on microphere with optical tweezers,” Appl. Phys. Lett. 63, 715–717 (1993).
- W. H. Wright, G. J. Sonek, and M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735–1748 (1994).
- K. F. Ren, G. Gréhan, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).
- K. F. Ren, G. Gréhan, and G. Gouesbet, “Prediction of reverse radiation pressure by generalized Lorenz-Mie theory,” Appl. Opt. 35, 2702–2710 (1996).
- G. Martinot-Lagarde, B. Pouligny, M. I. Angelova, G. Gréhan, and G. Gouesbet, “Trapping and levitation of a dielectric sphere with off-centered Gaussian beams: II. GLMT analysis,” Pure Appl. Opt. 4, 571–585 (1995).
- J. A. Lock and G. Gouesbet, “A rigorous justification of the localized approximation to the beam-shape coefficients in the generalized Lorenz–Mie theory. I: On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).
- L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. 19, 1177–1179 (1979).
- J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for fundamental Gaussian beam,” J. Appl. Phys. 66(7), 2800–2802 (1989).
- G. Gouesbet, J. A. Lock, and G. Gréhan, “Partial wave representation of laser beams for use in light scattering calculations,” Appl. Opt. 34, 2133–2143 (1995).
- G. Gouesbet, “Generalized Lorenz-Mie theory and applications,” Part. Part. Syst. Charact. 11, 22–34 (1994).
- G. Gouesbet, “Partial wave expansions and properties of axisymmetric light beams,” Appl. Opt. 35, 1543–1555 (1996).
- G. Gréhan, B. Maheu, and G. Gouesbet, “Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539–3548 (1986).
- B. Maheu, G. Gréhan, and G. Gouesbet, “Generalized Lorenz-Mie theory: first exact values and comparisons with the localized approximation,” Appl. Opt. 26, 23–26 (1987).
- G. Gouesbet, G. Gréhan, and B. Maheu, “Localized interpretation to compute all the coefficients g_{nm} in the generalized Lorenz-Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).
- G. Gouesbet and J. A. Lock, “A rigorous justification of the localized approximation to the beam-shape coefficients in the generalized Lorenz–Mie theory. II: Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).
Cited By |
Alert me when this paper is cited |
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
« Previous Article | Next Article »
OSA is a member of CrossRef.