OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 13 — May. 1, 1998
  • pp: 2781–2787

Influence of the emission–reception geometry in laser-induced fluorescence spectra from turbid media

Sigrid Avrillier, Eric Tinet, Dominique Ettori, Jean-Michel Tualle, and Bernard Gélébart  »View Author Affiliations

Applied Optics, Vol. 37, Issue 13, pp. 2781-2787 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (191 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Routine clinical detection of precancerous lesions by laser-induced autofluorescence was recently demonstrated in several medical fields. This technique is based on the analysis of complex spectra with overlapping broad structures. However, in biological tissues, scattering and absorption are wavelength dependent, and the observed fluorescence signals are distorted when the illumination and detection geometry varies, making comparison of results from different groups difficult. We study this phenomenon experimentally in human tissue in a simple experiment: A fiber is used for the excitation and an identical fiber is used for reception of the signal; both fibers are maintained in contact with the tissue. We study the distortion of the spectra as a function of the distance between the two fibers. For correction of the spectra we show that it is possible to use a fast and accurate ab initio Monte Carlo simulation when the spectral variations of the optical properties of the medium are known. The main advantage of this simulation is its applicability even for complex boundary conditions or when the sample consists of several layers.

© 1998 Optical Society of America

OCIS Codes
(170.6930) Medical optics and biotechnology : Tissue
(170.7050) Medical optics and biotechnology : Turbid media
(260.2510) Physical optics : Fluorescence
(300.6170) Spectroscopy : Spectra

Original Manuscript: October 21, 1997
Revised Manuscript: January 16, 1998
Published: May 1, 1998

Sigrid Avrillier, Eric Tinet, Dominique Ettori, Jean-Michel Tualle, and Bernard Gélébart, "Influence of the emission–reception geometry in laser-induced fluorescence spectra from turbid media," Appl. Opt. 37, 2781-2787 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. For an extensive bibliography, see, for example, R. R. Alfano, G. C. Pradham, G. C. Tang, B. B. Das, K. M. Yoo , “Optical spectroscopy may offer novel diagnostic approaches for the medical profession,” in Laser Non-Surgical Medicine: New Challenges for an Old Application, L. Goldman , ed. (Technomic, Lancaster, Pa., 1991).
  2. P. S. Andersson, A. Gustafson, U. Stenram, K. Svanberg, S. Svanberg, “Diagnosis of arterial atherosclerosis using laser induced fluorescence,” Laser Med. Sci. 2, 261–266 (1987). [CrossRef]
  3. T. G. Papazoglou, K. Arakawa, W. S. Grundfest, T. Papaioannou, M. Fishbein, F. Litvack, “Laser induced autofluorescence versus exogenous chemical probe induced fluorescence as an arterial layer detection method. A comparative study,” in Optical Fibers in Medicine V, A. Katzir, ed., Proc. SPIE1201, 16–26 (1990). [CrossRef]
  4. S. Andersson-Engels, J. Johansson, K. Svanberg, S. Svanberg, “Fluorescence imaging and point measurements of tissue: applications to the demarcation of malignant tumors and atherosclerotic lesions from normal tissue,” Photochem. Photobiol. 53, 807–814 (1991). [PubMed]
  5. J. Hung, S. Lam, J. C. Le Riche, B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg. Med. 11, 99–105 (1991). [CrossRef] [PubMed]
  6. K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992). [CrossRef] [PubMed]
  7. Z. Z. Huang, W. S. Glassman, G. C. Tang, S. Lubicz, R. R. Alfano, “Fluorescence diagnosis of gynecological cancerous and normal tissues,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2135, 42–45 (1994). [CrossRef]
  8. M. Anidjar, O. Cussenot, S. Avrillier, D. Ettori, J. M. Villette, J. Fiet, P. Teillac, A. Le Duc, “Ultra-violet laser induced autofluorescence distinction between malignant and normal urothelial cells and tissues,” J. Biomed. Opt. 1, 335–341 (1996). [CrossRef] [PubMed]
  9. M. Anidjar, D. Ettori, O. Cussenot, P. Meria, F. Desgrandschamps, A. Cortesse, P. Teillac, A. Le Duc, S. Avrillier, “Laser induced autofluorescence diagnosis of bladder tumors: dependence on the excitation wavelength,” J. Urol. 156, 1590–1596 (1996). [CrossRef] [PubMed]
  10. See, for example, D. Braichotte, G. Wagnières, R. Bays, Ph. Monnier, H. van den Bergh , “Clinical pharmacokinetic studies of Photofrin by fluorescence spectroscopy in the oral cavity, the esophagus and the bronchi,” Cancer 75, 2768–2778 (1995).
  11. T. J. Dougherty, M. Cooper, T. S. Mang, “Cutaneous phototoxic occurrences in patients receiving Photofrin,” Lasers Surg. Med. 10, 485–493 (1990). [CrossRef] [PubMed]
  12. J. J. Baraga, R. P. Rava, P. Taroni, C. Kittrel, M. Fitzmaurice, M. S. Feld, “Laser induced fluorescence spectroscopy of normal and atherosclerotic human aorta using 306–310 nm excitation,” Lasers Surg. Med. 10, 245–261 (1990). [CrossRef]
  13. B. Chance, P. Cohen, F. Jöbsis, B. Schoener, “Intracellular oxidation-reduction states in vivo,” Science 137, 499–508 (1962). [CrossRef] [PubMed]
  14. A. Mayevsky, “Brain NADH redox state monitored in vivo by fibre optic surface fluorometry,” Brain Res. Rev. 7, 49–54 (1984). [CrossRef]
  15. R. C. Benson, R. A. Meyer, M. E. Zaruba, G. M. McKhann, “Cellular autofluorescence. Is it due to flavins?” J. Histochem. Cytochem. 27, 44–58 (1979). [CrossRef] [PubMed]
  16. B. Chance, B. Schoener, “Fluorometric studies of flavin component of the respiratory chain,” in Flavins and Flavoproteins, E. C. Slater, ed. (Elsevier, New York, 1966), pp. 510–519.
  17. B. B. Das, K. M. Yoo, F. Liu, J. Cleary, R. Prudente, E. Celmer, R. R. Alfano, “Spectral optical-density measurements of small particles and breast tissues,” Appl. Opt. 32, 549–552 (1993). [CrossRef] [PubMed]
  18. W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  19. R. Marchesini, A. Bertoni, S. Andreola, E. Melloni, A. E. Sichirollo, “Extinction and absorption coefficients and scattering phase functions of human tissues in vitro,” Appl. Opt. 28, 2318–2324 (1989). [CrossRef] [PubMed]
  20. A. Roggan, H. Albrecht, K. Dörschel, O. Minet, G. Müller, “Experimental set-up and Monte-Carlo model for the determination of optical tissue properties in the wavelength range 330–1100 nm,” in Laser Interaction with Hard and Soft Tissue II, H. J. Albrecht, G. P. Delacretaz, T. H. Meier, R. W. Steiner, L. O. Svaasand, M. J. van Gemert, eds., Proc. SPIE2323, 21–36 (1995). [CrossRef]
  21. H. J. C. M. Sterenborg, M. J. C. van Gemert, W. Kamphorst, J. G. Wolbergs, W. Hogervorst, “Spectral dependence of the optical properties of human brain,” Laser Med. Sci. 4, 221–227 (1989). [CrossRef]
  22. E. Tinet, S. Avrillier, D. Ettori, P. Van Der Zee, J. P. Ollivier, “Monte-Carlo evaluation of laser-induced fluorescence spectra modifications due to optical properties of the medium: application to real spectra correction,” in Optical Biopsy, R. Cubeddu, S. Svanberg, H. van den Bergh, eds., Proc. SPIE2081, 129–136 (1994). [CrossRef]
  23. J. Wu, M. S. Feld, R. P. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3585–3595 (1993). [CrossRef] [PubMed]
  24. A. J. Durkin, S. Jaikumar, N. Ramanujam, R. Richards-Kortrum, “Relation between fluorescence spectra of dilute and turbid samples,” Appl. Opt. 33, 414–423 (1994). [CrossRef] [PubMed]
  25. M. S. Patterson, B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissue,” Appl. Opt. 33, 1963–1974 (1994). [CrossRef] [PubMed]
  26. C. M. Gardner, S. L. Jacques, A. J. Welch, “Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence,” Appl. Opt. 35, 1780–1792 (1996). [CrossRef] [PubMed]
  27. E. Tinet, S. Avrillier, J. M. Tualle, “Fast semi-analytical Monte Carlo simulation for time resolved light propagation in turbid media,” J. Opt. Soc. Am. A 13, 1903–1915 (1996). [CrossRef]
  28. B. Gélébart, E. Tinet, J. M. Tualle, S. Avrillier, “Phase function simulation in tissue phantoms: a fractal approach,” Pure Appl. Opt. 5, 377–388 (1996). [CrossRef]
  29. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1995), Chap. 12, p. 496.
  30. G. Allègre, S. Avrillier, D. Albe-Fessard, “Stimulation of a nerve fibre bundle by a short UV pulse from an excimer laser,” Neurosci. Lett. 180, 261–264 (1994). [CrossRef] [PubMed]
  31. M. Anidjar, O. Cussenot, S. Avrillier, D. Ettori, J. M. Villette, J. Fiet, P. Teillac, A. Le Duc, “Ultra-violet laser induced autofluorescence distinction between malignant and normal urothelial cells and tissues,” J. Biomed. Opt. 1, 335–341 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited