Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Defense frontier analysis of quantum cryptographic systems

Not Accessible

Your library or personal account may give you access

Abstract

When a quantum cryptographic system operates in the presence of background noise, security of the key can be recovered by a procedure called key distillation. A key-distillation scheme effective against so-called individual (bitwise-independent) eavesdropping attacks involves sacrifice of some of the data through privacy amplification. We derive the amount of data sacrifice sufficient to defend against individual eavesdropping attacks in both BB84 and B92 protocols and show in what sense the communication becomes secure as a result. We also compare the secrecy capacity of various quantum cryptosystems, taking into account data sacrifice during key distillation, and conclude that the BB84 protocol may offer better performance characteristics than the B92.

© 1998 Optical Society of America

Full Article  |  PDF Article
More Like This
Quantum low probability of intercept

Jeffrey H. Shapiro, Don M. Boroson, P. Ben Dixon, Matthew E. Grein, and Scott A. Hamilton
J. Opt. Soc. Am. B 36(3) B41-B50 (2019)

Security of subcarrier wave quantum key distribution against the collective beam-splitting attack

G. P. Miroshnichenko, A. V. Kozubov, A. A. Gaidash, A. V. Gleim, and D. B. Horoshko
Opt. Express 26(9) 11292-11308 (2018)

Engineering trade studies for a quantum key distribution system over a 30  km free-space maritime channel

John Gariano, Mark Neifeld, and Ivan Djordjevic
Appl. Opt. 56(3) 543-557 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (26)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.