OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 14 — May. 10, 1998
  • pp: 2895–2914

Design, Implementation, and Characterization of a Hybrid Optical Interconnect for a Four-Stage Free-Space Optical Backplane Demonstrator

Yongsheng Liu, Brian Robertson, Guillaume C. Boisset, Michael H. Ayliffe, Rajiv Iyer, and David V. Plant  »View Author Affiliations


Applied Optics, Vol. 37, Issue 14, pp. 2895-2914 (1998)
http://dx.doi.org/10.1364/AO.37.002895


View Full Text Article

Acrobat PDF (2205 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A four-stage unidirectional ring free-space optical interconnect system was designed, analyzed, implemented, and characterized. The optical system was used within a complementary metal-oxide semiconductor–self-electro-optic-effect-device-based optical backplane demonstrator that was designed to fit into a standard VME chassis. This optical interconnect was a hybrid microlens–macrolens system, in which the microlens relays were arranged in a maximum lens-to-waist configuration to route the optical beams from the optical power supply to the transceiver arrays, while the macrolens optical relays were arranged in a telecentric configuration to route optical signal beams from stage to stage. The following aspects of the optical system design are discussed: the optical parameters for the hybrid optical system, the image mapping of the two-dimensional array of optical beams from stage to stage, the alignment tolerance of the hybrid relay system, and the power budget of the overall optical interconnect. The implementation of the optical system, including the characterization of optical components, subsystem prealignment, and final system assembly, is presented. The two-dimensional array of beams for the stage-to-stage interconnect was adjusted with a rotational error of <0.05° and a lateral offset error of <3.5 μm. The measured throughput is in good agreement with the lower-bound predictions obtained in the theoretical results, with an optical power throughput of −20.2 dB from the fiber input of the optical power supply to the modulator array and −25.5 dB from the fiber input to the detector plane.

© 1998 Optical Society of America

OCIS Codes
(200.2610) Optics in computing : Free-space digital optics
(200.4650) Optics in computing : Optical interconnects

Citation
Yongsheng Liu, Brian Robertson, Guillaume C. Boisset, Michael H. Ayliffe, Rajiv Iyer, and David V. Plant, "Design, Implementation, and Characterization of a Hybrid Optical Interconnect for a Four-Stage Free-Space Optical Backplane Demonstrator," Appl. Opt. 37, 2895-2914 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-14-2895


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. W. Goodman, F. I. Leonberger, S. Y. Kung, and R. A. Athale, “Optical interconnects for VLSI systems,” Proc. IEEE 72, 850–875 (1984).
  2. T. Sakano, T. Matsumoto, K. Noguchi, and T. Sawabe, “Design and performance of a multiprocessor system employing board-to-board free-space optical interconnects: COSINE-1,” Appl. Opt. 30, 2334–2343 (1991).
  3. F. B. McCormick, T. J. Cloonan, F. A. P. Tooley, A. L. Lentine, J. M. Sasian, J. L. Brubaker, R. L. Morrison, S. L. Walker, R. J. Crisci, R. A. Novotny, S. J. Hinterlong, H. S. Hinton, and E. Kerbis, “Six-stage digital free-space optical switching network using symmetric self-electro-optic-effect devices,” Appl. Opt. 32, 5153–5171 (1993).
  4. F. B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlong, R. J. Crisci, R. A. Novotny, and H. S. Hinton, “Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect smart-pixel arrays,” Appl. Opt. 33, 1601–1618 (1994).
  5. G. F. Sauter, “Gradient-index lens optical backplane,” Appl. Opt. 33, 3446–3453 (1994).
  6. T. Sakano, T. Matsumoto, and K. Noguchi, “Three-dimensional board-to-board free-space optical interconnects and their application to the prototype multiprocessor system: COSINE-III,” Appl. Opt. 34, 1815–1822 (1995).
  7. T. Sakano, K. Kimura, K. Noguchi, and N. Naito, “256 × 256 turnover-type free-space multichannel optical switch based on polarization control using liquid-crystal spatial light modulators,” Appl. Opt. 34, 2581–2589 (1995).
  8. S. Araki, M. Kajita, K. Kasahara, K. Kubota, K. Kurihara, I. Redmond, E. Schenfeld, and T. Suzaki, “Experimental free-space optical network for massively computers,” Appl. Opt. 35, 1269–1281 (1996).
  9. D. V. Plant, B. Robertson, H. S. Hinton, M. H. Ayliffe, G. C. Boisset, W. Hsiao, D. Kabal, N. K. Kim, Y. S. Liu, M. R. Otazo, D. Pavlasek, A. Z. Shang, J. Simmons, K. Song, D. A. Thompson, and W. M. Robertson, “4 × 4 vertical-cavity-surface-emitting laser (VCSEL) and metal-semiconductor-metal (MSM) optical backplane demonstrator system,” Appl. Opt. 35, 6365–6368 (1996).
  10. B. Kelly, P. Horan, F. A. P. Tooley, M. R. Taghizadeh, and J. Hegarty, “Optically lateral inhibition networks that use self-linearized self-electro-optic-effect devices: theory and experiment,” Appl. Opt. 35, 1372–1380 (1996).
  11. T. H. Szymanski and H. S. Hinton, “Reconfigurable intelligent optical backplane for parallel computing and communications,” Appl. Opt. 35, 1253–1268 (1996).
  12. B. Supmonchai and T. H. Szymanski, “High speed VLSI concentrators for terabit intelligent optical backplanes,” paper to be presented at the International Conference on Optical Computing, Brugge, Belgium, 17–20 June 1998.
  13. T. H. Szymanski and H. S. Hinton, “Architecture of a terabit free-space intelligent optical backplane,” J. Parallel Distr. Comput. (to be published).
  14. F. A. P. Tooley, “Challenges in optically interconnecting electronics,” IEEE J. Sel. Top. Quantum Electron. 2, 3–13 (1996).
  15. D. V. Plant, B. Robertson, H. S. Hinton, M. H. Ayliffe, G. C. Boisset, D. J. Goodwill, D. Kabal, R. Iyer, Y. S. Liu, D. R. Rolston, M. Venditti, T. H. Szymanski, W. W. Robertson, and M. R. Taghizadeh, “Optical, optomechanical, and optoelectronic design and operational testing of a multistage optical backplane demonstration system,” in Proceedings of the Third International Conference on Massively Parallel Processing and Optical Interconnections, A. Gottlieb, Y. Li, and E. Schenfeld, eds. (IEEE, Piscataway, N.J., 1996), pp. 306–312.
  16. A. W. Lohmann, “Image formation of dilute arrays for optical information processing,” Opt. Commun. 86, 365–370 (1986).
  17. N. C. Craft and A. Y. Feldblum, “Optical interconnects based on arrays of surface-emitting lasers and lenslets,” Appl. Opt. 31, 1735–1739 (1992).
  18. K. Tanaka and O. Kanzaki, “Focus of a diffracted Gaussian beam through a finite aperture lens: experimental and numerical investigations,” Appl. Opt. 26, 390–395 (1987).
  19. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Merserau, and A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
  20. B. Robertson, G. C. Boisset, H. S. Hinton, Y. S. Liu, N. H. Kim, M. R. Otazo, D. Pavlasek, D. V. Plant, D. Rolston, and V. M. Robertson, “Design of a lenslet array based free-space optical backplane demonstrator,” presented at the International Conference on Optical Computing, 22–25 August 1994, Edinburgh, UK.
  21. D. Rolson, B. Robertson, D. V. Plant, and H. S. Hinton, “Analysis of a microchannel interconnect based on the clustering of smart-pixel-device windows,” Appl. Opt. 35, 1220–1233 (1996).
  22. D. Kabal, M. H. Ayliffe, G. C. Boisset, D. V. Plant, D. R. Rolston, and M. B. Venditti, “Packaging of two-dimensional smart pixel arrays,” presented at the IEEE/Leos 1996 Summer Topical Meeting on Advanced Applications of Lasers in Materials and Processing, 5–9 August 1996, Keystone, Col.
  23. R. Iyer, Y. S. Liu, G. C. Boisset, D. J. Goodwill, M. H. Ayliffe, B. Robertson, W. M. Robertson, D. Kabal, F. Lacroix, and D. V. Plant, “Design, implementation, and characterization of an optical power supply spot-array generator for a four-stage free-space optical backplane,” Appl. Opt. 36, 9230–9242 (1997).
  24. G. C. Boisset, M. H. Ayliffe, B. Robertson, R. Iyer, Y. S. Liu, D. V. Plant, D. J. Goodwill, D. Kabal, and D. Pavlasek, “Optomechanics for a four-stage hybrid-self-electro-optic-effet-device-based free-space optical backplane,” Appl. Opt. 36, 7341–7358 (1997).
  25. S. M. Prince, C. P. Beauchamp, and F. A. P. Tooley, “Tolerancing of array of microlens relays: a case study,” J. Eur. Opt. Soc. A 3, 151–156 (1994).
  26. Y. S. Liu, B. Robertson, D. V. Plant, H. S. Hinton, and W. M. Robertson, “Design and characterization of a microchannel optical interconnect for optical backplanes,” Appl. Opt. 34, 3127–3141 (1997).
  27. S. A. Self, “Focusing of spherical Gaussian beams,” Appl. Opt. 22, 658–661 (1983).
  28. P. Belland and J. P. Crenn, “Changes in the characteristics of a Gaussian beam weakly diffracted by a circular aperture,” Appl. Opt. 21, 522–527 (1982).
  29. K. Hamanaka, “Optical bus interconnection system using Selfoc lenses,” Opt. Lett. 16, 1222–1224 (1991).
  30. B. Robertson, Y. S. Liu, G. C. Boisset, M. R. Tagizadeh, and D. V. Plant, “In situ interferometric alignment systems for the assembly of microchannel relay systems,” Appl. Opt. 36, 9253–9260 (1997).
  31. Sinclair Optics, Inc., 6780 Palmyra Road, Fairport, New York 14450.
  32. H. Sasaki, K. Shinozaki, and T. Kamijoh, “Reduced alignment accuracy requirement using focused Gaussian beams for free-space optical interconnection,” Opt. Eng. 35, 1550–1560 (1996).
  33. Y. S. Liu, “Design, implementation, and characterization of free-space optical interconnects for optical backplanes,” Ph.D. dissertation (McGill University, Montreal, Quebec, Canada, 1997), Chap. 3.
  34. A. R. Al-Rashed and B. E. A. Saleh, “Decentered Gaussian beams,” Appl. Opt. 34, 6819–6825 (1995).
  35. J. Jahns and S. J. Walker, “Two-dimensional array of diffractive microlenses fabricated by thin film deposition,” Appl. Opt. 29, 931–936 (1990).
  36. G. L. Yip, P. C. Noutsios, and L. Chen, “Improved propagation-mode near-field method for refractive-index profiling of optical waveguides,” Appl. Opt. 35, 2060–2068 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited