OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 14 — May. 10, 1998
  • pp: 2895–2914

Design, implementation, and characterization of a hybrid optical interconnect for a four-stage free-space optical backplane demonstrator

Yongsheng Liu, Brian Robertson, Guillaume C. Boisset, Michael H. Ayliffe, Rajiv Iyer, and David V. Plant  »View Author Affiliations


Applied Optics, Vol. 37, Issue 14, pp. 2895-2914 (1998)
http://dx.doi.org/10.1364/AO.37.002895


View Full Text Article

Enhanced HTML    Acrobat PDF (2205 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A four-stage unidirectional ring free-space optical interconnect system was designed, analyzed, implemented, and characterized. The optical system was used within a complementary metal-oxide semiconductor–self-electro-optic-effect-device-based optical backplane demonstrator that was designed to fit into a standard VME chassis. This optical interconnect was a hybrid microlens–macrolens system, in which the microlens relays were arranged in a maximum lens-to-waist configuration to route the optical beams from the optical power supply to the transceiver arrays, while the macrolens optical relays were arranged in a telecentric configuration to route optical signal beams from stage to stage. The following aspects of the optical system design are discussed: the optical parameters for the hybrid optical system, the image mapping of the two-dimensional array of optical beams from stage to stage, the alignment tolerance of the hybrid relay system, and the power budget of the overall optical interconnect. The implementation of the optical system, including the characterization of optical components, subsystem prealignment, and final system assembly, is presented. The two-dimensional array of beams for the stage-to-stage interconnect was adjusted with a rotational error of <0.05° and a lateral offset error of <3.5 μm. The measured throughput is in good agreement with the lower-bound predictions obtained in the theoretical results, with an optical power throughput of -20.2 dB from the fiber input of the optical power supply to the modulator array and -25.5 dB from the fiber input to the detector plane.

© 1998 Optical Society of America

OCIS Codes
(200.2610) Optics in computing : Free-space digital optics
(200.4650) Optics in computing : Optical interconnects

History
Original Manuscript: August 26, 1997
Revised Manuscript: January 15, 1998
Published: May 10, 1998

Citation
Yongsheng Liu, Brian Robertson, Guillaume C. Boisset, Michael H. Ayliffe, Rajiv Iyer, and David V. Plant, "Design, implementation, and characterization of a hybrid optical interconnect for a four-stage free-space optical backplane demonstrator," Appl. Opt. 37, 2895-2914 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-14-2895

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited