OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 14 — May. 10, 1998
  • pp: 2925–2934

Extensible, Low-Chromatic-Sensitivity, All-diffractive-Optics Relay for Interconnecting Optoelectronic Device Arrays

Rick L. Morrison and D. Bruce Buchholz  »View Author Affiliations

Applied Optics, Vol. 37, Issue 14, pp. 2925-2934 (1998)

View Full Text Article

Acrobat PDF (1125 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



For free-space optical interconnections between optoelectronic chips to reach commercial realization, the technology must provide high-density optical channels in a simple, inexpensive, and easily aligned package. Although point-to-point connections with microlens pairs can provide densities of several thousand channels per square centimeter, the Gaussian nature of the beams limits the connection range to a few millimeters. We propose an arrangement of microlens pairs with an intermediate relay lens that significantly increases the connection distance. This basic setup can be tiled laterally across large chips to form extensible arrays. The optical design is constructed entirely with diffractive elements because of the low chromatic sensitivity over a range of approximately ∓10% around the design wavelength. We derive the lateral positioning error at the image by using a simple ray trace, and we show the effect of Gaussian beams. We experimentally demonstrate the low chromatic sensitivity for a system with an interconnection distance of 64 mm. Finally, we demonstrate the interconnection of two linear arrays of multimode fibers with two adjacent channels operating at data rates of hundreds of megabits per second.

© 1998 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(200.2610) Optics in computing : Free-space digital optics
(200.4650) Optics in computing : Optical interconnects

Rick L. Morrison and D. Bruce Buchholz, "Extensible, Low-Chromatic-Sensitivity, All-diffractive-Optics Relay for Interconnecting Optoelectronic Device Arrays," Appl. Opt. 37, 2925-2934 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. L. Lentine, K. W. Goosen, J. A. Walker, L. M. F. Chirovsky, L. A. D’Asaro, S. P. Hui, B. J. Tseng, R. E. Leibenguth, J. E. Cunningham, W. Y. Jan, J. Kuo, D. W. Dahringer, D. P. Kossives, D. D. Bacon, G. Livescu, R. L. Morrison, R. A. Novotny, and D. B. Buchholz, “High-speed optoelectronic VLSI switching chip with >4000 optical I/O based on flip-chip bonding of MQW modulators and detectors to silicon CMOS,” IEEE J. Sel. Top. Quantum Electron. 2, 77–84 (1996).
  2. C. Fan, B. Mansoorian, D. A. Van Blerkom, M. W. Hansen, V. H. Ozguz, S. C. Esener, and G. C. Marsden, “Digital free-space optical interconnections: a comparison of transmitter technologies,” Appl. Opt. 34, 3103–3115 (1995).
  3. F. B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlong, R. J. Crisci, R. A. Novotny, and H. S. Hinton, “Five-stage free-space optical computing network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays,” Appl. Opt. 33, 1601–1618 (1994).
  4. A. L. Lentine, D. J. Reiley, R. A. Novotny, R. L. Morrison, J. M. Sasian, M. G. Beckman, D. B. Buchholz, S. J. Hinterlong, T. J. Cloonan, G. W. Richards, and F. B. McCormick, “ATM distribution network using an optoelectronic VLSI switching chip,” in Optics in Computing, Vol. 8 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 2–4.
  5. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, and A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, 465–477 (1992).
  6. F. A. P. Tooley, S. M. Prince, M. R. Taghizadeh, F. B. McCormick, M. Derstine, and S. Wakelin, “Implementation of a hybrid lens,” Appl. Opt. 34, 6471–6480 (1995).
  7. S. Sinzinger and J. Jahns, “Variations of the hybrid imaging concept for optical computing applications,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 183–185.
  8. S. Sinzinger and J. Jahns, “Integrated micro-optical imaging system with a high interconnection capacity fabricated in planar optics,” Appl. Opt. 36, 4729–4735 (1997).
  9. N. Streibl, R. Volkel, J. Schwider, P. Habel, and N. Lindlein, “Parallel optoelectronic interconnections with high packing density through a light-guiding plate using grating couplers and field lenses,” Opt. Commun. 99, 167–171 (1993).
  10. R. L. Morrison, “An extensible, diffractive optic system for interconnecting opto-electronic device arrays,” in Diffractive Optics and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 79–82.
  11. R. Kostuk, J. Yeh, and M. Fink, “Distributed optical data bus for boardlevel interconnects,” Appl. Opt. 32, 5010–5021 (1993).
  12. J. Schwider, “Achromatic design of holographic optical interconnects,” Opt. Eng. 35, 826–831 (1996).
  13. G. J. Swanson, “Binary optics technology: theoretical limits on the diffraction efficiency of multilevel diffractive optical elements,” Lincoln Laboratory Tech. Rep. 914 (MIT, Lexington, Mass., 1991).
  14. R. Athale and K. Raj, “Foundry fabrication for diffractive optical elements,” in Diffractive and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 334.
  15. T. R. Werner, J. A. Cox, J. Gieske, K. Hewitt, K. Raj, R. A. Athale, “The CO-OP DOE foundry process results,” in Diffractive and Holographic Device Technologies and Applications IV, I. Cindrich and S. H. Lee, eds., Proc. SPIE 3010, 96–104 (1997).
  16. Y. M. Wong, D. J. Muehiner, C. C. Faudskar, D. B. Buchholz, M. Fisteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, M. T. Asom, G. D. Guth, J. L. Zilko, J. V. Gates, and P. J. Anthony, “Technology development of a high density 32-channel 16 Gbps optical data link for optical interconnection applications for the Optoelectronic Technology Consortium (OETC),” J. Lightwave Technol. 13, 995–1016 (1995).
  17. F. A. P. Tooley, “Challenges in optically interconnecting electronics,” IEEE J. Sel. Top. Quantum Electron. 2, 3–13 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited