OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 15 — May. 20, 1998
  • pp: 3246–3252

Photon-echo novelty filter: a unique time-differential sensor of optical wave-front distortion caused by airborne turbulence

Yiping Zhang and Ravinder Kachru  »View Author Affiliations

Applied Optics, Vol. 37, Issue 15, pp. 3246-3252 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (313 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



To continue our earlier research on the photon-echo novelty filter, we lengthen the novelty filter’s response time by 3 orders of magnitude from nanoseconds to microseconds. On the microsecond time scale of airborne turbulence we demonstrate the potential of the novelty filter as a unique time-differential phase sensor. We observe no considerable degradation of the filter’s sensitivity and accuracy to as high as 50 and 200 μs, respectively. This result demonstrates that the filter can be continuously tuned with regard to its response time over a wide range. We further apply the novelty filter to the probing of phase distortions of a laser beam going through a He jet. We also investigate issues regarding the operation of the novelty filter to deal with random and spatially nonuniform phase distortion. The relation of the photon-echo novelty filter to traditional double-exposure holography and the role of the time-differential sensor in adaptive optics are discussed.

© 1998 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.7060) Atmospheric and oceanic optics : Turbulence
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(350.5030) Other areas of optics : Phase

Original Manuscript: June 3, 1997
Revised Manuscript: December 1, 1997
Published: May 20, 1998

Yiping Zhang and Ravinder Kachru, "Photon-echo novelty filter: a unique time-differential sensor of optical wave-front distortion caused by airborne turbulence," Appl. Opt. 37, 3246-3252 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. G. Gilbert, L. J. Otten, eds., Aero-Optical Phenomena, Vol. 80 of Progress in Astronautics and Aeronautics (American Institute of Aeronautics and Astronautics, New York, 1982), pp. 1–9.
  2. L. A. Thompson, “Adaptive optics in astronomy,” Phys. Today 47, 24–31 (1994). [CrossRef]
  3. R. Q. Fugate, B. L. Ellerbroek, C. H. Higgins, M. P. Jelonek, W. J. Lange, A. C. Slavin, W. J. Wild, D. M. Winker, J. M. Wynia, J. M. Spinhirne, B. R. Boeke, R. E. Ruane, J. F. Moroney, M. D. Oliker, D. W. Swindle, R. A. Cleis, “Two generations of laser-guide-star adaptive-optics experiments at the Starfire optical range,” J. Opt. Soc. Am. A 11, 310–324 (1994). [CrossRef]
  4. J. E. Craig, W. C. Rose, “The optics of aircraft shear flows,” AIAA paper 85-0557, presented at the Shear Flow Control Conference, March 1985 (American Institute of Aeronautics and Astronautics, New York, 1994).
  5. M. C. Roggemann, B. M. Welsh, R. Q. Fugate, “Improving the resolution of ground-based telescopes,” Rev. Mod. Phys. 69, 437–505 (1997). [CrossRef]
  6. W. C. Rose, “Nearfield aerodynamics and optical propagation characteristics of a large-scale turret model,” AFWL Rep. No. TR-81-28 (Air Force Weapons Laboratory, Kirtland Air Force Base, New Mexico, 1982).
  7. R. K. Tyson, Principles of Adaptive Optics (Academic, Boston, 1991), p. 36.
  8. Y. Zhang, R. Kachru, “Photon-echo novelty filter for measuring a sudden change in index of refraction,” Appl. Opt. 35, 6762–6766 (1996). [CrossRef] [PubMed]
  9. D. Z. Anderson, J. Feinberg, “Optical novelty filter,” IEEE J. Quantum Electron. 25, 635–647 (1989). [CrossRef]
  10. D. Z. Anderson, D. M. Lininger, J. Feinberg, “Optical tracking novelty filter,” Opt. Lett. 12, 123–125 (1987). [CrossRef] [PubMed]
  11. J. Khoury, C. L. Woods, M. Cronin-Golomb, “Photorefractive holographic interference novelty filter,” Opt. Commun. 82, 533–538 (1991). [CrossRef]
  12. F. T. S. Yu, S. Wu, S. Rajan, A. Mayers, D. A. Gregory, “Optical novelty filter with phase carrier,” Opt. Commun. 92, 205–208 (1992). [CrossRef]
  13. G. Yang, A. Siahmakoun, “Time-delay Fizeau phase-conjugate interferometer,” Appl. Opt. 32, 1578–1582 (1993). [CrossRef] [PubMed]
  14. V. V. Shkunov, B. Y. Zel’dovich, “Optical phase conjugation,” Sci. Am. 253(6), 54–59 (1985). [CrossRef]
  15. D. M. Bloom, P. F. Liao, N. P. Economou, “Observation of amplified reflection by degenerate four-wave mixing in atomic sodium vapor,” Opt. Lett. 2, 58–60 (1978). [CrossRef] [PubMed]
  16. S. H. Lee, ed., Optical Information Processing, Fundamentals (Springer-Verlag, Berlin, 1981), pp. 150–151.
  17. P. F. Liao, D. M. Bloom, “Continuous-wave backward-wave generation by degenerate four-wave mixing in ruby,” Opt. Lett. 3, 4–6 (1978). [CrossRef] [PubMed]
  18. M. K. Kim, R. Kachru, “Multiple-bit long-term data storage by backward-stimulated echo in Eu3+:YAlO3,” Opt. Lett. 14, 423–425 (1989). [CrossRef] [PubMed]
  19. T. W. Mossberg, “Time-domain frequency-selective optical data storage,” Opt. Lett. 7, 77–79 (1982). [CrossRef] [PubMed]
  20. R. W. Equall, Y. Sun, R. L. Cone, R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179–2182 (1994). [CrossRef] [PubMed]
  21. R. W. Equall, R. L. Cone, R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963–3969 (1995). [CrossRef]
  22. A. Yariv, Quantum Electronics (Wiley, New York, 1975), pp. 334–335.
  23. L. McMackin, B. Masson, N. Clark, K. Bishop, R. Pierson, E. Chen, “Hartmann wave front sensor studies of dynamic organized structure in flow fields,” AIAA J. 33, 2158–2164 (1995). [CrossRef]
  24. G. Birkhoff, E. H. Zarantonello, Jets, Wakes, and Cavities (Academic, New York, 1957), pp. 294–295.
  25. H. M. Smith, Principles of Holography (Wiley, New York, 1975), pp. 227–231.
  26. H. J. Caufield, Handbook of Optical Holography (Academic, San Diego, Calif., 1979), pp. 491–493.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited