OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 15 — May. 20, 1998
  • pp: 3256–3263

Some characteristics of an extremely-short- external-cavity laser diode realized by butt coupling a Fabry–Perot laser diode to a single-mode optical fiber

Yakov Sidorin and Dennis Howe  »View Author Affiliations


Applied Optics, Vol. 37, Issue 15, pp. 3256-3263 (1998)
http://dx.doi.org/10.1364/AO.37.003256


View Full Text Article

Enhanced HTML    Acrobat PDF (225 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

When butt coupling a Fabry–Perot laser diode to an extremely closely spaced waveguide (separation less than or equal to a few times the Rayleigh range of the laser beam), there is a trade-off between the optimal power coupling and the variation of the coupled laser diode’s operational characteristics. Changes in the butt-coupling configuration parameters influence the coupling efficiency, as well as the strength of the feedback into the laser diode. Using a previously reported phenomenological model that treats the butt-coupled laser diode as an extremely short external-cavity (ESEC) device, we quantitatively describe how the butt-coupling parameters can be used to control the output power, threshold current, wavelength, and relative intensity noise of the ESEC laser diode. Our analyses are supported by experimental results. The importance of choosing the correct coordinate plane for evaluation of the overlap integrals that are used in the model is also discussed.

© 1998 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.0250) Integrated optics : Optoelectronics
(130.3120) Integrated optics : Integrated optics devices
(140.2020) Lasers and laser optics : Diode lasers
(140.2600) Lasers and laser optics : Free-electron lasers (FELs)

History
Original Manuscript: August 18, 1997
Revised Manuscript: February 2, 1998
Published: May 20, 1998

Citation
Yakov Sidorin and Dennis Howe, "Some characteristics of an extremely-short- external-cavity laser diode realized by butt coupling a Fabry–Perot laser diode to a single-mode optical fiber," Appl. Opt. 37, 3256-3263 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-15-3256


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Voumard, R. Salathe, H. Weber, “Resonance amplifier model describing diode lasers coupled to short external resonators,” Appl. Phys. 12, 369–378 (1977). [CrossRef]
  2. L. A. Coldren, T. L. Koch, “External cavity laser design,” J. Lightwave Technol. 2, 1045–1051 (1984). [CrossRef]
  3. C. Lin, C. A. Burrus, L. A. Coldren, “Characteristics of single-longitudinal-mode selection in short-coupled-cavity (SCC) injection lasers,” J. Lightwave Technol. 2, 544–549 (1984). [CrossRef]
  4. G. Wenke, R. Gross, P. Meissner, E. Patzak, “Characteristics of a compact three-cavity laser configuration,” J. Lightwave Technol. 5, 608–615 (1987). [CrossRef]
  5. K.-Y. Liou, C. A. Burrus, F. Bosch, “Graded-index-rod external coupled-cavity laser with backface output-monitor-stabilized single-frequency operation,” J. Lightwave Technol. 3, 985–987 (1985). [CrossRef]
  6. J. R. Andrews, “Enhanced thermal stability of single longitudinal mode coupled cavity lasers,” Appl. Phys. Lett. 47, 71–73 (1985). [CrossRef]
  7. L. J. Bonnell, D. T. Cassidy, “Alignment tolerances of short-external-cavity InGaAsP diode lasers for use as tunable single-mode sources,” Appl. Opt. 28, 4622–4628 (1989). [CrossRef] [PubMed]
  8. D. M. Bruce, D. T. Cassidy, “Detection of oxygen using short-external-cavity GaAs semiconductor diode lasers,” Appl. Opt. 29, 1327–1332 (1990). [CrossRef] [PubMed]
  9. X. Zhu, D. T. Cassidy, “Liquid mixture detection by InGaAsP semiconductor lasers,” in Laser Diode and LED Applications III, K. J. Linden, ed., Proc. SPIE3000, 138–148 (1997). [CrossRef]
  10. B. F. Ventrudo, D. T. Cassidy, “Operating characteristics of a tunable diode laser absorption spectrometer using short-external-cavity and DFB laser diodes,” Appl. Opt. 29, 5007–5013 (1990). [CrossRef] [PubMed]
  11. D. T. Cassidy, D. M. Bruce, B. F. Ventrudo, “Short-external-cavity module for enhanced single-mode tuning of InGaAsP and AlGaAs semiconductor diode lasers,” Rev. Sci. Instrum. 62, 2385–2388 (1991). [CrossRef]
  12. P. A. Ruprecht, J. R. Brandenberger, “Enhancing diode laser tuning with a short external cavity,” Opt. Commun. 93, 82–86 (1992). [CrossRef]
  13. Y. Uenishi, K. Honma, S. Nagaoka, “Tunable laser diode using a nickel micromachined external mirror,” Electron. Lett. 32, 1207–1208 (1996). [CrossRef]
  14. H. Ukita, Y. Uenishi, Y. Katagiri, “Applications of an extremely short strong-feedback configuration of an external-cavity laser diode system fabricated with GaAs-based integration technology,” Appl. Opt. 33, 5557–5563 (1994). [CrossRef] [PubMed]
  15. Y. Uenishi, M. Tsugai, M. Mehregany, “Hybrid-integrated laser-diode micro-external mirror fabricated by (110) silicon micromachining,” Electron. Lett. 31, 965–966 (1995). [CrossRef]
  16. A. Dandridge, R. O. Miles, “Spectral characteristics of semiconductor laser diodes coupled to optical fibers,” Electron. Lett. 17, 273–285 (1981). [CrossRef]
  17. I. Ikushima, M. Maeda, “Lasing spectra of semiconductor lasers coupled to an optical fiber,” IEEE J. Quantum Electron. QE-15, 844–845 (1979). [CrossRef]
  18. P. Karioja, D. Howe, “Diode-laser-to-waveguide butt-coupling,” Appl. Opt. 35, 404–416 (1996). [CrossRef] [PubMed]
  19. Y. Sidorin, D. Howe, “Diode-laser-to-waveguide butt coupling: extremely short external cavity,” Appl. Opt. 36, 4273–4277 (1997). [CrossRef] [PubMed]
  20. Y. Sidorin, D. Howe, “Wavelength tuning based on butt-coupling into an optical fiber,” Opt. Lett. 22, 802–804 (1997). [CrossRef] [PubMed]
  21. H. Kressel, “Semiconductor laser devices,” in Laser Handbook, F. T. Arecchi, E. O. Schultz-Dubois, eds. (North-Holland, Amsterdam, 1988), Vol. 1.
  22. E. D. Palik, ed., Handbook of Optical Constants of Solids II (Academic, Orlando, Fla., 1991).
  23. H. Haug, S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1990), Chap. 6.
  24. D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1979).
  25. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968).
  26. N. A. Olsson, N. K. Dutta, “Effects of external optical feedback on the spectral properties of cleaved-coupled-cavity semiconductor lasers,” Appl. Phys. Lett. 44, 840–842 (1984). [CrossRef]
  27. H. Temkin, N. A. Olsson, J. H. Abeles, R. H. Logan, M. B. Panish, “Reflection noise in index-guided InGaAs lasers,” IEEE J. Quantum Electron. QE-22, 286–293 (1986). [CrossRef]
  28. J. Sigg, “Effects of optical feedback on the light-current characteristics of semiconductor lasers,” IEEE J. Quantum Electron. 29, 1262–1270 (1993). [CrossRef]
  29. SDL, Inc., 80 Rose Orchard Way, San Jose, Calif. 95134.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited