OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 15 — May. 20, 1998
  • pp: 3306–3310

Temporal beating of nondegenerate azimuthal modes in nonspherical microdroplets: technique for determining the distortion amplitude

Justin M. Hartings, Janice L. Cheung, and Richard K. Chang  »View Author Affiliations


Applied Optics, Vol. 37, Issue 15, pp. 3306-3310 (1998)
http://dx.doi.org/10.1364/AO.37.003306


View Full Text Article

Enhanced HTML    Acrobat PDF (227 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Oscillations that are superimposed on the smooth, exponential decay of light from microcavity modes are observed, and they are characteristic of the temporal beating of adjacent, degeneracy-split azimuthal modes in distorted spheres. The perturbation theory result for the frequency splitting of azimuthal modes in distorted spheres is used to determine the distortion amplitude from the temporal oscillations associated with mode beating. The beating period can be used to determine whether the spectrally measured resonance linewidth Δω l,n is broadened by closely spaced, degeneracy-split azimuthal modes of slightly nonspherical droplets.

© 1998 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials

History
Original Manuscript: September 8, 1997
Revised Manuscript: October 31, 1997
Published: May 20, 1998

Citation
Justin M. Hartings, Janice L. Cheung, and Richard K. Chang, "Temporal beating of nondegenerate azimuthal modes in nonspherical microdroplets: technique for determining the distortion amplitude," Appl. Opt. 37, 3306-3310 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-15-3306


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. W. Barber, R. K. Chang, eds., Optical Effects Associated with Small Particles (World Scientific, Singapore, 1988).
  2. V. B. Braginski, M. L. Gorodetsky, V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989). [CrossRef]
  3. L. Collot, V. Lefèvre-Seguin, M. Brune, J. M. Raimond, S. Haroche, “Very high-Q whispering-gallery mode resonances observed on fused silica microspheres,” Europhys. Lett. 23, 327–334 (1993). [CrossRef]
  4. S. Arnold, C. T. Liu, W. B. Witten, J. M. Ramsey, “Room-temperature microparticle-based persistent spectral hole burning memory,” Opt. Lett. 16, 420–422 (1991). [CrossRef] [PubMed]
  5. G. Griffel, S. Arnold, D. Taskent, A. Serpengüzel, J. Connolly, N. Morris, “Morphology-dependent resonances of a microsphere–optical fiber system,” Opt. Lett. 21, 695–697 (1996). [CrossRef] [PubMed]
  6. H. Mabuchi, H. J. Kimble, “Atom galleries for whispering atoms: binding atoms in stable orbits around an optical resonator,” Opt. Lett. 19, 749–751 (1994). [CrossRef] [PubMed]
  7. F. Treussart, J. Hare, L. Collot, V. Lefèvre, D. S. Weiss, V. Sandoghdar, J. M. Raimond, S. Haroche, “Quantized atom–field force at the surface of a microsphere,” Opt. Lett. 19, 1651–1653 (1994). [CrossRef] [PubMed]
  8. A. J. Campillo, J. D. Eversole, H-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67, 437–440 (1991). [CrossRef] [PubMed]
  9. J. C. Knight, N. Dubreuil, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, S. Haroche, “Mapping whisperinggallery modes in microspheres with a near-field probe,” Opt. Lett. 20, 1515–1517 (1995). [CrossRef] [PubMed]
  10. H. M. Lai, P. T. Leung, K. Young, P. W. Barber, S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187–5189 (1990). [CrossRef] [PubMed]
  11. G. Chen, R. K. Chang, S. C. Hill, P. W. Barber, “Frequency splitting of degenerate spherical cavity modes: stimulated Raman scattering spectrum of deformed droplets,” Opt. Lett. 16, 1269–1271 (1991). [CrossRef] [PubMed]
  12. S. Arnold, D. E. Spock, L. M. Folan, “Electric-field-modulated light scattering near a morphological resonance of a trapped aerosol particle,” Opt. Lett. 15, 1111–1113 (1990). [CrossRef] [PubMed]
  13. J. C. Swindal, D. H. Leach, R. K. Chang, K. Young, “Precession of morphology-dependent resonances in nonspherical droplets,” Opt. Lett. 18, 191–193 (1993). [CrossRef] [PubMed]
  14. J.-Z. Zhang, D. H. Leach, R. K. Chang, “Photon lifetime within a droplet: temporal determination of elastic and stimulated Raman scattering,” Opt. Lett. 13, 270–272 (1988). [CrossRef] [PubMed]
  15. A. Serpengüzel, G. Chen, R. K. Chang, W.-F. Hsieh, “Heuristic model for the growth and coupling of nonlinear proceses in droplets,” J. Opt. Soc. Am. 9, 871–883 (1992). [CrossRef]
  16. H. Lamb, Hydronamics (Dover, New York, 1945), pp. 475 and 639.
  17. T. D. Taylor, A. Acrivos, “On the deformation and drag of a falling viscous drop at low Reynolds number,” J. Fluid Mech. 18, 466–476 (1964). [CrossRef]
  18. J. C. Swindal, G. Chen, K. Schaschek, R. K. Chang, “Measurement of the evaporation rates of closely spaced flowing droplets by optical cavity resonances,” Atom. Sprays 6, 331–351 (1996).
  19. G. Chen, M. Mazumder, Y. R. Chemla, A. Serpengüzel, R. K. Chang, S. C. Hill, “Wavelength variation of laser emission along the entire rim of slightly deformed microdroplets,” Opt. Lett. 18, 1993–1995 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited