OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 16 — Jun. 1, 1998
  • pp: 3515–3526

Theoretical determination of parameters for optimum surface specificity in overlayer attenuated-total-reflection infrared spectroscopy

John S. Loring and Donald P. Land  »View Author Affiliations

Applied Optics, Vol. 37, Issue 16, pp. 3515-3526 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (273 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the feasibility of overlayer attenuated-total-reflectance (O-ATR) infrared spectroscopy as a surface analytical tool for studying reactions and molecular properties of adsorbates at surfaces exposed to aqueous nonelectrolyte solutions. Through modeling an O-ATR system by assuming it to comprise three, four, or n phases of homogeneous refractive index, one can use an electric-field analysis to determine how the parameters of adsorption free energy, overlayer thickness, initial angle of incidence, and internal-reflection element refractive-index influence solvent-subtracted O-ATR infrared-absorption spectra. The theory behind such an analysis is explained, and the results of its application are presented for hypothetical O-ATR systems consisting of either a zinc selenide or a germanium internal-reflection element, an iron or hematite overlayer, an adsorbate layer, and a solution of methylene chloride in water.

© 1998 Optical Society of America

OCIS Codes
(120.5700) Instrumentation, measurement, and metrology : Reflection
(240.6490) Optics at surfaces : Spectroscopy, surface
(300.6340) Spectroscopy : Spectroscopy, infrared

Original Manuscript: July 23, 1997
Revised Manuscript: December 1, 1997
Published: June 1, 1998

John S. Loring and Donald P. Land, "Theoretical determination of parameters for optimum surface specificity in overlayer attenuated-total-reflection infrared spectroscopy," Appl. Opt. 37, 3515-3526 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. A. Somorjai, Introduction to Surface Chemistry and Catalysis (Wiley, New York, 1994).
  2. Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature (London) 337, 519–525 (1989). [CrossRef]
  3. P. K. Hansma, R. Sonnenfeld, J. Schneir, O. Marti, S. A. C. Gould, C. B. Prater, A. L. Weisenhorn, B. Drake, H. Hansma, G. Slough, W. W. McNairy, R. V. Coleman, “Scanning probe microscopy of liquid–solid interfaces,” in Scanning Tunneling Microscopy and Related Methods, R. J. Behm, N. Garcia, H. Rohrer, eds. (Kluwer, London, 1990), Vol. 184, pp. 299–313. [CrossRef]
  4. R. Sonnenfeld, J. Schneir, P. K. Hansma, “Scanning tunneling microscopy: natural for electrochemistry,” in Modern Aspects of Electrochemistry, R. E. White, J. Bockris, B. E. Conway, eds. (Plenum, New York, 1990), Vol. 21, pp. 1–28.
  5. W. N. Hansen, “Internal reflection spectroscopy in electrochemistry,” in Optical Techniques in Electrochemistry, R. H. Muller, ed. (Wiley, New York, 1973), Vol. 9, pp. 1–60.
  6. S. J. Hug, B. Sulzberger, “In situ Fourier transform infrared spectroscopic evidence for the formation of several different surface complexes of oxalate on TiO2 in the aqueous phase,” Langmuir 10, 3587–3597 (1994). [CrossRef]
  7. K. Ohta, H. Ishida, “Matrix formalism for calculation of electric field intensity of light in stratified multilayered films,” Appl. Opt. 29, 1952–1959 (1990). [CrossRef] [PubMed]
  8. N. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1967).
  9. P. Klocek, Handbook of Infrared Optical Materials (Dekker, New York, 1991).
  10. M. A. Ordal, R. J. Bell, R. W. Alexander, L. A. Newquist, M. R. Querry, “Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths,” Appl. Opt. 27, 1203–1209 (1988). [CrossRef] [PubMed]
  11. M. R. Querry, U.S. Army Chemical Research and Development Center, Rep. ADA158623XSP (Aberdeen Proving Ground, Md., 1985).
  12. D. K. Ottesen, “An experimental and theoretical study of the infrared reflectance of thin oxide films on metals,” J. Electrochem. Soc. 132, 2250–2257 (1985). [CrossRef]
  13. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt. 12, 555–562 (1973). [CrossRef] [PubMed]
  14. J. E. Bertie, Z. Lan, R. N. Jones, J. E. Bertie, Z. Lan, R. N. Jones, Y. Apelblat, “Infrared intensities of liquids. XVIII. Accurate optical constants and molar absorption coeffients between 6500 and 800 cm-1 of dichooromethane at 25 C from spectra recorded in several laboratories,” Appl. Spectrosc. 49, 840–851 (1995). [CrossRef]
  15. S. G. Daniel, “The adsorption on metal surfaces of long chain polar compounds from hydrocarbon solutions,” Trans. Faraday Soc. 47, 1345–1359 (1951). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited