OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 16 — Jun. 1, 1998
  • pp: 3586–3593

Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics

Judith R. Mourant, James P. Freyer, Andreas H. Hielscher, Angelia A. Eick, Dan Shen, and Tamara M. Johnson  »View Author Affiliations

Applied Optics, Vol. 37, Issue 16, pp. 3586-3593 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (208 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have studied the optical properties of mammalian cell suspensions to provide a mechanistic basis for interpreting the optical properties of tissues in vivo. Measurements of the wavelength dependence of the reduced scattering coefficient and measurements of the phase function demonstrated that there is a distribution of scatterer sizes. The volumes of the scatterers are equivalent to those of spheres with diameters in the range between ∼0.4 and 2.0 μm. Measurements of isolated organelles indicate that mitochondria and other similarly sized organelles are responsible for scattering at large angles, whereas nuclei are responsible for small-angle scattering. Therefore optical diagnostics are expected to be sensitive to organelle morphology but not directly to the size and shape of the cells.

© 1998 Optical Society of America

OCIS Codes
(170.1530) Medical optics and biotechnology : Cell analysis
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.4730) Medical optics and biotechnology : Optical pathology
(170.5280) Medical optics and biotechnology : Photon migration
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

Original Manuscript: December 19, 1997
Revised Manuscript: February 11, 1998
Published: June 1, 1998

Judith R. Mourant, James P. Freyer, Andreas H. Hielscher, Angelia A. Eick, Dan Shen, and Tamara M. Johnson, "Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics," Appl. Opt. 37, 3586-3593 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. E. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997). [CrossRef] [PubMed]
  2. J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995). [CrossRef] [PubMed]
  3. J. R. Mourant, I. J. Bigio, J. Boyer, T. Johnson, J. Lacey, “Detection of gastrointestinal cancer by elastic-scattering spectroscopy,” J. Biomed. Opt. 1, 192–199 (1996). [CrossRef] [PubMed]
  4. J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10–20 (1997). [CrossRef] [PubMed]
  5. A. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, J. D. Watson, Molecular Biology of the Cell (Garland, New York, 1994), pp. 18–19.
  6. G. E. Palade, “An electron microscope study of the mitochondrial structure,” in Mitochondria, E. Sato, ed., Vol. 10 of Selected Papers in Biochemistry (University Park Press, Baltimore, Md., 1972), pp. 35–58.
  7. C. F. Bohren, D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  8. B. Gelebart, E. Tinet, J. M. Tualle, S. Avrillier, “Phase function simulation in tissue phantoms: a fractal approach,” Pure Appl. Opt. 5, 377–388 (1996). [CrossRef]
  9. B. Beauvoit, T. Kitai, B. Chance, “Contribution of the mitochondrial compartment to the optical properties of rat liver: a theoretical and practical approach,” Biophys. J. 67, 2501–2510 (1994). [CrossRef] [PubMed]
  10. J. M. Schmitt, A. Knuttel, “Model of optical coherence tomography of homogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997). [CrossRef]
  11. T. J. Farrell, M. S. Patterson, M. S. Patterson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992). [CrossRef] [PubMed]
  12. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994). [CrossRef]
  13. L. A. Kunz-Schughart, A. Simm, W. Mueller-Klieser, “Oncogene-associated transformation of rodent fibroblasts is accompanied by large morphological and metabolic changes,” Oncol. Rep. 2, 651–661 (1995).
  14. K. E. A. LaRue, E. M. Bradbury, J. P. Freyer, “Differential regulation of cyclin-dependent kinase inhibitors in monolayers and spheroid cultures of tumorigenic and nontumorigenic fibroblasts,” Cancer Res. 58, 1305–1314 (1998). [PubMed]
  15. H. Lodish, D. Baltimore, A. Berk, S. L. Zipurssky, P. Matsudaira, J. Darnell, Molecular Cell Biology (Freeman, New York, 1995), Chap. 5.
  16. F. A. Jenkins, H. E. White, Fundamentals of Optics, 4th ed. (McGraw-Hill, New York, 1976), pp. 30–31.
  17. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997). [CrossRef] [PubMed]
  18. R. Graaff, J. G. Aarnoose, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, M. H. Koelink, “Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations,” Appl. Opt. 31, 1370–1376 (1992). [CrossRef] [PubMed]
  19. B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, B. Chance, “Characterization of absorption and scattering properties of various yeast strains by time-resolved spectroscopy,” Cell Biophys. 23, 91–109 (1993).
  20. B. Beauvoit, S. M. Evans, Y. W. Jenkins, E. Miller, B. Chance, “Correlation between the light scattering and the mitochondrial content of normal and tissues and transplantable rodent tumors,” Anal. Biochem. 226, 167–174 (1995). [CrossRef] [PubMed]
  21. A. M. K. Nilsson, C. Sturesson, D. L. Liu, S. Andersson-Engels, “Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,” Appl. Opt. 37, 1256–1267 (1998). [CrossRef]
  22. J. M. Schmitt, G. Kumar, “Turbulent nature of refractice-index variations in biological tissue,” Opt. Lett. 21, 1310–1312 (1996). [CrossRef] [PubMed]
  23. J. Beuthan, O. Minet, J. Helfmann, M. Herrig, G. Muller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41, 369–382 (1996). [CrossRef] [PubMed]
  24. J. V. Watson, Introduction to Flow Cytometry (Cambridge U. Press, Cambridge, 1991), Chap. 10. [CrossRef]
  25. A. Bloin, R. P. Bolender, E. R. Weibel, “Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study,” J. Cell Biol. 72, 441–455 (1977). [CrossRef]
  26. A. M. James, Y.-H. Wei, C.-Y. Pang, M. P. Murphy, “Altered mitochondrial-function in fibroblasts containing Melas or Merrf mitochondrial-DNA mutations,” Biochem J. 318, 401–407 (1996).
  27. L. C. Junquerira, J. Carneiro, R. O. Kelley, Basic Histology (Appleton & Lange, Norwalk, Conn., 1992), pp. 66, 391.
  28. S. T. Flock, B. C. Wilson, M. S. Patterson, “Total attenuation and scattering phase functions of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835–841 (1987). [CrossRef] [PubMed]
  29. S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by dermis,” Lasers Life Sci. 1, 309–333 (1987).
  30. P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, A. Katzir, eds., Proc. SPIE1888, 454–465 (1993). [CrossRef]
  31. A. Dunn, R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Sel. Topics Quantum Electron. 2, 898–905 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited