OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 18 — Jun. 20, 1998
  • pp: 3845–3860

Ground-based differential absorption lidar for water-vapor and temperature profiling: methodology

Jens Bösenberg  »View Author Affiliations


Applied Optics, Vol. 37, Issue 18, pp. 3845-3860 (1998)
http://dx.doi.org/10.1364/AO.37.003845


View Full Text Article

Enhanced HTML    Acrobat PDF (327 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A comprehensive formulation of the differential absorption lidar (DIAL) methodology is presented that explicitly includes details of the spectral distributions of both the transmitted and the backscattered light. The method is important for high-accuracy water-vapor retrievals and in particular for temperature measurements. Probability estimates of the error that is due to Doppler-broadened Rayleigh scattering based on an extended experimental data set are presented, as is an analytical treatment of errors that are due to averaging in the nonlinear retrieval scheme. System performance requirements are derived that show that water-vapor retrievals with an accuracy of better than 5% and temperature retrievals with an accuracy of better than 1 K in the entire troposphere are feasible if the error that results from Rayleigh–Doppler correction can be avoided. A modification of the DIAL technique, high-spectral-resolution DIAL avoids errors that are due to Doppler-broadened Rayleigh backscatter and permits simultaneous water-vapor and wind measurements with the same system.

© 1998 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar
(280.3640) Remote sensing and sensors : Lidar
(290.5870) Scattering : Scattering, Rayleigh

History
Original Manuscript: September 2, 1997
Revised Manuscript: February 2, 1998
Published: June 20, 1998

Citation
Jens Bösenberg, "Ground-based differential absorption lidar for water-vapor and temperature profiling: methodology," Appl. Opt. 37, 3845-3860 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-18-3845

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited