OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 18 — Jun. 20, 1998
  • pp: 3861–3872

Multiwavelength Lidar Observations of the Decay Phase of the Stratospheric Aerosol Layer Produced by the Eruption of Mount Pinatubo in June 1991

Geoffrey S. Kent and Gary M. Hansen  »View Author Affiliations


Applied Optics, Vol. 37, Issue 18, pp. 3861-3872 (1998)
http://dx.doi.org/10.1364/AO.37.003861


View Full Text Article

Acrobat PDF (910 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A small three-wavelength (355-, 532-, and 1064-nm) lidar system at NASA Langley Research Center in Hampton, Virginia, has been used since 1992 to make measurements on stratospheric aerosols. The data have been processed to study the decay rate of the stratospheric aerosol layer formed after the eruption of Mount Pinatubo in 1991 and its modulation, the aerosol effective radius, and the column mass loading. The stratospheric aerosol decay curves show annual and biennial cycles as well as short-term changes. At 532 nm, the decay time constant was 302 days for the period from February 1992 to August 1994 and had increased to 645 days for the period from September 1994 to December 1997. By 1996 the integrated stratospheric aerosol backscatter had fallen to levels (7.7 × 10−5 sr−1 at 532 nm) close to those seen in 1979 and 1989–1991. This decreasing trend was still continuing in 1997, showing no evidence for any anthropogenic contribution to the stratospheric aerosol.

© 1998 Optical Society of America

OCIS Codes
(280.1100) Remote sensing and sensors : Aerosol detection
(280.3640) Remote sensing and sensors : Lidar
(290.1350) Scattering : Backscattering

Citation
Geoffrey S. Kent and Gary M. Hansen, "Multiwavelength Lidar Observations of the Decay Phase of the Stratospheric Aerosol Layer Produced by the Eruption of Mount Pinatubo in June 1991," Appl. Opt. 37, 3861-3872 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-18-3861


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. B. Russell, J. M. Livingstone, R. F. Pueschel, J. J. Bauman, J. B. Pollack, S. L. Brooks, P. Hamill, L. W. Thomason, L. L. Stowe, T. Deshler, E. G. Dutton, and R. W. Bergstrom, “Global to microscale evolution of the Pinatubo volcanic aerosol derived from diverse measurements and analyses,” J. Geophys. Res. 101, 18745–18763 (1996).
  2. L. W. Thomason, G. S. Kent, C. R. Trepte, and L. R. Poole, “A comparison of the stratospheric aerosol background periods of 1979 and 1989–1991,” J. Geophys. Res. 102, 3611–3616 (1997).
  3. M. T. Osborn, R. J. DeCoursey, C. R. Trepte, D. M. Winker, and D. C. Woods, “Evolution of the Pinatubo volcanic cloud over Hampton, Virginia,” Geophys. Res. Lett. 22, 1101–1104 (1995).
  4. P. Di Girolamo, G. Pappalardo, N. Spinelli, V. Berardi, and R. Velotta, “Lidar observations of the stratospheric aerosol layer over southern Italy in the period 1991–1995,” J. Geophys. Res. 101, 18765–18773 (1996).
  5. H. Jäger, O. Uchino, T. Nagai, T. Fujimoto, V. Freudenthaler, and F. Homberg, “Ground-based remote sensing of the decay of the Pinatubo eruption cloud at three northern hemisphere sites,” Geophys. Res. Lett. 22, 607–610 (1995).
  6. G. Beyerle, A. Herber, R. Neuber, and H. Gernandt, “Temporal development of Mt. Pinatubo aerosols as observed by lidar and sun photometer at Ny-Alesend, Spitsbergen,” Geophys. Res. Lett. 22, 2497–2500 (1995).
  7. M. H. Hitchman, M. McKay, and C. R. Trepte, “A climatology of stratospheric aerosol,” J. Geophys. Res. 99, 20689–20700 (1994).
  8. R. G. Pinnick, S. G. Jennings, and P. Chylek, “Relationships between extinction, absorption, backscattering, and mass content of sulfuric acid aerosols,” J. Geophys. Res. 85, 4059–4066 (1980).
  9. G. P. Gobbi, “Lidar estimation of stratospheric aerosol properties: surface, volume, and extinction to backscatter ratio,” J. Geophys. Res. 100, 11219–11235 (1995).
  10. H. Jäger, T. Deshler, and D. J. Hofmann, “Midlatitude lidar backscatter conversions based on balloon-sonde aerosol measurements,” Geophys. Res. Lett. 22, 1729–1732 (1995).
  11. M. J. Post, C. J. Grund, A. M. Weickmann, K. R. Healy, and R. J. Willis, “Comparison of Mount Pinatubo and El Chichón volcanic events: lidar observations at 10.6 and 0.69 μm,” J. Geophys. Res. 101, 3929–3940 (1996).
  12. G. S. Kent, P.-H. Wang, M. P. McCormick and K. M. Skeens, “Multiyear Stratospheric Aerosol and Gas Experiment II measurements of upper tropospheric aerosol characteristics,” J. Geophys. Res. 100, 13875–13899 (1995).
  13. P. B. Russell, T. J. Swissler, and M. P. McCormick, “Methodology for error analysis and simulation of lidar aerosol measurements,” Appl. Opt. 18, 3783–3797 (1979).
  14. M. T. Osborn, G. S. Kent, and C. R. Trepte, “Stratospheric aerosol measurements by LITE,” J. Geophys. Res. (to be published).
  15. G. S. Kent, “Dispersion characteristics of volcanically injected aerosol as seen by SAGE I, SAM II, and SAGE II,” in Preprint Volume of Sixth Conference on Atmospheric Radiation (American Meteorological Society, Boston, Mass. 1986), pp. J54–J55.
  16. H. Jäger and W. Carnuth, “The decay of the El Chichon stratospheric perturbation observed by lidar at northern midlatitudes,” Geophys. Res. Lett. 14, 696–699 (1987).
  17. V. E. Kousky, ed. “Near real-time analyses, ocean/atmosphere,” Climate Diagnostics Bulletin No. 97/1 (U.S. Department of Commerce, Washington, D.C., 1997).
  18. Smithsonian Institution Bulletin of the Global Volcanism Network 20, No. 10 (1995).
  19. Smithsonian Institution Bulletin of the Global Volcanism Network 21, No. 5 (1996).
  20. Smithsonian Institution Bulletin of the Global Volcanism Network 21, No. 10 (1996).
  21. Smithsonian Institution Bulletin of the Global Volcanism Network 22, No. 1 (1997).
  22. P. B. Russell, T. J. Swissler, M. P. McCormick, W. P. Chu, J. M. Livingston, and T. J. Pepin, “Satellite and correlative measurements of the stratospheric aerosol. I. An optical model for data conversions,” J. Atmos. Sci. 38, 1279–1294 (1981).
  23. T. Deshler, B. J. Johnson, and W. R. Rozier, “Balloonborne measurements of Pinatubo aerosol during 1991 and 1992 at 41N: vertical profiles, size distributions, and volatility,” Geophys. Res. Lett. 20, 1435–1438 (1993).
  24. J. E. Hansen and J. W. Hovenier, “Interpretation of the polarization of Venus,” J. Atmos. Sci. 31, 1137–1160 (1974).
  25. J. Anderson and V. K. Saxena, “Temporal changes of Mount Pinatubo aerosol characteristics over northern midlatitudes derived from SAGE II extinction measurements,” J. Geophys. Res. 101, 19455–19463 (1996).
  26. F. Kasten, “Falling speed of aerosol particles,” J. Appl. Meteorol. 7, 944–947 (1968).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited