OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 18 — Jun. 20, 1998
  • pp: 3954–3960

Development of a narrow-band, tunable, frequency-quadrupled diode laser for UV absorption spectroscopy

Jeffrey P. Koplow, Dahv A. V. Kliner, and Lew Goldberg  »View Author Affiliations


Applied Optics, Vol. 37, Issue 18, pp. 3954-3960 (1998)
http://dx.doi.org/10.1364/AO.37.003954


View Full Text Article

Acrobat PDF (241 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A compact, lightweight, low-power-consumption source of tunable, narrow-bandwidth blue and UV radiation is described. In this source, a single-longitudinal-mode diode laser seeds a pulsed, GaAlAs tapered amplifier whose ~860-nm output is frequency quadrupled by two stages of single-pass frequency doubling. Performance of the laser system is characterized over a wide range of amplifier duty cycles (0.1–1.0), pulse durations (50 ns–1.0 μs), peak currents (≤14 A), and average currents (≤2.0 A). The capabilities and limitations of this source are discussed. We recorded high-resolution, Doppler-limited absorption spectra of nitric oxide and sulfur dioxide near 215 nm; the SO<sub>2</sub> spectrum was found to have significantly more structure and higher peak absorption cross sections than previously reported.

© 1998 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3600) Lasers and laser optics : Lasers, tunable
(140.3610) Lasers and laser optics : Lasers, ultraviolet
(140.5960) Lasers and laser optics : Semiconductor lasers
(190.2620) Nonlinear optics : Harmonic generation and mixing
(300.1030) Spectroscopy : Absorption

Citation
Jeffrey P. Koplow, Dahv A. V. Kliner, and Lew Goldberg, "Development of a narrow-band, tunable, frequency-quadrupled diode laser for UV absorption spectroscopy," Appl. Opt. 37, 3954-3960 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-18-3954


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. C. R. Webster, R. T. Menzies, and E. D. Hinkley, “Infrared laser absorption: theory and applications,” in Laser Remote Chemical Analysis, R. M. Measures, ed. (Wiley, New York, 1988), pp. 163–272.
  2. Y. Zhang, D. H. Stedman, G. A. Bishop, S. P. Beaton, P. L. Guenther, and I. F. McVey, “Enhancement of remote sensing for mobile source nitric oxide,” J. Air Waste Manage. Assoc. 46, 25–29 (1996).
  3. C. Zimmermann, V. Vuletic, A. Hemmerich, and T. W. Hänsch, “All solid state laser source for tunable blue and ultraviolet radiation,” Appl. Phys. Lett. 66, 2318–2320 (1995).
  4. K. Mizuuchi and K. Yamamoto, “Generation of 340-nm light by frequency doubling of a laser diode in bulk periodically poled LiTaO3,” Opt. Lett. 21, 107–109 (1996).
  5. Y. Uchiyama, M. Tsuchiya, H.-F. Liu, and T. Kamiya, “Efficient ultraviolet-light (345-nm) generation in a bulk LiIO3 crystal by frequency doubling of a self-seeded gain-switched AlGaInP Fabry–Perot semiconductor laser,” Opt. Lett. 22, 78–80 (1997).
  6. J. J. Zayhowski, “Ultraviolet generation with passively Q-switched microchip lasers,” Opt. Lett. 21, 588–590 (1996); erratum, 21, 1618 (1996).
  7. L. Goldberg and D. A. V. Kliner, “Deep-UV generation by frequency quadrupling of a high-power GaAlAs semiconductor laser,” Opt. Lett. 20, 1145–1147 (1995).
  8. L. Goldberg and D. A. V. Kliner, “Tunable UV generation at 286 nm by frequency tripling of a high-power mode-locked semiconductor laser,” Opt. Lett. 20, 1640–1642 (1995).
  9. D. A. V. Kliner, J. P. Koplow, and L. Goldberg, “Narrow-band, tunable, semiconductor-laser-based source for deep-UV absorption spectroscopy,” Opt. Lett. 22, 1418–1420 (1997).
  10. G. R. Fleming, Chemical Applications of Ultrafast Spectroscopy (Oxford University, New York, 1986), p. 45.
  11. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, New York, 1991).
  12. L. Goldberg and D. Mehuys, “Blue light generation using a high power tapered amplifier mode-locked laser,” Appl. Phys. Lett. 65, 522–524 (1994).
  13. L. Goldberg, M. R. Surette, and D. Mehuys, “Filament formation in a tapered GaAlAs optical amplifier,” Appl. Phys. Lett. 62, 2304–2306 (1993).
  14. L. Goldberg, D. Mehuys, M. R. Surette, and D. C. Hall, “High-power, near-diffraction-limited large-area traveling-wave semiconductor amplifiers,” IEEE J. Quantum Electron. 29, 2028–2043 (1993).
  15. R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
  16. L. Goldberg, D. Mehuys, and D. Welch, “High power mode-locked compound laser using a tapered semiconductor amplifier,” IEEE Photon. Technol. Lett. 6, 1070–1072 (1994).
  17. J.-C. Baumert, P. Günter, and H. Melchior, “High efficiency second-harmonic generation in KNbO3 crystals,” Opt. Commun. 48, 215–220 (1983).
  18. H. Okabe, Photochemistry of Small Molecules (Wiley, New York, 1978); J. A. Coxon and D. A. Ramsay, “The A 2Σi − X2Σi band system of ClO: reinvestigation of the absorption spectrum,” Can. J. Phys. 54, 1034–1042 (1976); J. D. Bradshaw, M. O. Rodgers, and D. D. Davis, “Single photon laser-induced fluorescence detection of NO and SO2 for atmospheric conditions of composition and pressure,” Appl. Opt. 21, 2493–2500 (1982).
  19. G. C. Turk, “Analytical performance of laser-enhanced ionization in flames,” in Laser-Enhanced Ionization Spectrometry, J. C. Travis and G. C. Turk, eds. (Wiley, New York, 1996), pp. 161–211.
  20. R. P. Wayne, Chemistry of Atmospheres (Oxford University, New York, 1991).
  21. I. Glassman, Combustion (Academic, San Diego, Calif., 1996).
  22. A. J. D. Farmer, V. Hasson, and R. W. Nicholls, “Absolute oscillator strength measurements of the (ν" = 0, ν′ = 0 − 3) bands of the (A2Σ − X2Π) γ-system of nitric oxide,” J. Quant. Spectrosc. Radiat. Transfer 12, 627–633 (1972); W. G. Mallard, J. H. Miller, and K. C. Smyth, “Resonantly enhanced two-photon photoionization of NO in an atmospheric flame,” J. Chem. Phys. 76, 3483–3492 (1982); J. R. Reisel, C. D. Carter, and N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0, 0) band of the NO A2Σ+ − X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992); R. N. Zare, Angular Momentum (Wiley, New York, 1988), p. 314.
  23. D. E. Freeman, K. Yoshino, J. R. Esmond, and W. H. Parkinson, “High resolution absorption cross section measurements of SO2 at 213 K in the wavelength region 172–240 nm,” Planet. Space Sci. 32, 1125–1134 (1984); T. Ebata, O. Nakazawa, and M. Ito, “Rovibrational dependences on the C 1B2 state of SO2,” Chem. Phys. Lett. 143, 31–37 (1988) recorded SO2 absorption spectra with 6-GHz resolution between 215 and 222 nm, although these authors did not report absolute absorption cross sections.
  24. D. Mehuys, L. Goldberg, and D. F. Welch, “5.25-W cw near-diffraction-limited tapered-stripe semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 5, 1179–1182 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited