OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 18 — Jun. 20, 1998
  • pp: 4039–4050

Photon Correlation Spectroscopy on Flowing Polydisperse Fluid-Particle Systems: Theory

Ralf Weber and Gustav Schweiger  »View Author Affiliations


Applied Optics, Vol. 37, Issue 18, pp. 4039-4050 (1998)
http://dx.doi.org/10.1364/AO.37.004039


View Full Text Article

Acrobat PDF (317 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop an analytical expression for the homodyne autocorrelation function of laser light scattered by a laminar flow of a polydisperse particle-fluid system. In contrast to the already existing literature on the development of autocorrelation functions, we explicitly begin with the effects of the finite linewidth of the light source, the spatial and temporal intensity averaging that is due to the detection process, the Brownian particle movement on the amplitudes of the scattered light waves as well as on the degree of resolution that we introduce in this paper, and a general system velocity v = (vx, vy, vz). One main result is a new physical interpretation of the well-known, generally empirically introduced coherence factor. Quantities that are comparable to the well-known degree of coherence, coherence area, and number of coherence areas have also been obtained. Finally the investigations are simplified to an autocorrelation function that can be used for the analysis of fluid-particle systems in the low Knudsen number regime. It is shown that in this case particle size or size distribution, system velocity, and particle concentration can be obtained simultaneously. The developed autocorrelation function is related to frequently analyzed special cases and compared with expressions from the literature.

© 1998 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(120.7250) Instrumentation, measurement, and metrology : Velocimetry
(300.0300) Spectroscopy : Spectroscopy

Citation
Ralf Weber and Gustav Schweiger, "Photon Correlation Spectroscopy on Flowing Polydisperse Fluid-Particle Systems: Theory," Appl. Opt. 37, 4039-4050 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-18-4039


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. Z. Cummins and E. R. Pike, eds. Photon Correlation and Light Beating Spectroscopy (Plenum, New York, 1974).
  2. H. Z. Cummins and E. R. Pike, eds. Photon Correlation Spectroscopy and Velocimetry (Plenum, New York, 1977).
  3. E. O. Schulz-Du Bois, ed. Photon Correlation Techniques in Fluid Mechanics (Springer-Verlag, Berlin, 1983).
  4. J. B. Berne and R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976).
  5. B. Chu, Laser Light Scattering (Academic, New York, 1991).
  6. K. S. Schmitz, Dynamic Light Scattering by Macromolecules (Academic, Boston, 1990).
  7. W. Brown, ed. Dynamic Light Scattering (Clarendon, Oxford, 1993).
  8. P. Štěpánek, “Data analysis in dynamic light scattering,” in Dynamic Light Scattering, W. Brown, ed. (Clarendon, Oxford, 1993).
  9. G. B. King, T. W. Sorensen, and J. F. Merklin, “Photon correlation spectroscopy used as a particle size diagnostic in sooting flames,” Appl. Opt. 21, 976–978 (1982).
  10. D. P. Chowdhury, C. M. Sorensen, T. W. Taylor, J. F. Merklin, and T. W. Lester, “Application of photon correlation spectroscopy to flowing Brownian motion systems,” Appl. Opt. 23, 4149–4154 (1984).
  11. R. Weber, R. Rambau, G. Schweiger, and K. Lucas, “Analysis of a flowing aerosol by correlation spectroscopy: concentration, aperture, velocity and particle size effects,” J. Aerosol Sci. 24, 485–499 (1993).
  12. P. J. Bourke, J. Butterworth, L. E. Drain, P. A. Egelstaff, A. J. Hughes, P. Hutchinson, D. A. Jackson, E. Jakeman, B. Moss, J. O’Shaughnessy, E. R. Pike, and P. Schofield, “A study of the spatial structure of turbulent flow by intensity-fluctuation spectroscopy,” J. Phys. A 3, 216–228 (1970).
  13. C. T. Meneely, C. Y. She, and D. F. Edwards, “Measurement of flow and turbulence distribution of a free jet by laser photon correlation spectroscopy,” Opt. Commun. 6, 380–382 (1972).
  14. A. D. Birch, D. R. Brown, J. R. Thomas, and E. R. Pike, “The application of photon correlation spectroscopy to the measurement of turbulent flows,” J. Phys. D 6, L71–L73 (1973).
  15. C. Y. She and J. A. Lucero, “Simultaneous determination of velocity, turbulence and particle concentration of a turbulent flow using laser cross-beam photon-correlation spectroscopy,” Opt. Commun. 9, 300–303 (1973).
  16. J. B. Abbiss, T. W. Chubb, and E. R. Pike, “Laser Doppler anemometry,” Opt. Laser Technol. 6, 249–261 (1974).
  17. A. D. Birch, D. R. Brown, and J. R. Thomas, “Photon correlation spectroscopy and its application to the measurement of turbulence parameters in fluid flows,” J. Phys. D 8, 438–447 (1975).
  18. B. M. Ikegami, M. Shioji, and D.-Y. Wei, “Measurement of turbulence by laser homodyne technique,” Bull. JSME 29, 2036–2041 (1986).
  19. P. H. P. Chang and S. S. Penner, “Determinations of turbulent velocity fluctuations and mean particle radii in flames using scattered laser-power spectra,” J. Quant. Spectrosc. Radiat. Transfer 25, 97–104 (1981).
  20. E. Jakeman, “Theory of optical spectroscopy by digital autocorrelation of photon-counting fluctuations,” J. Phys. A 3, 201–215 (1970).
  21. E. Jakeman, C. J. Oliver, and E. R. Pike, “Clipped correlation of integrated intensity fluctuations of Gaussian light,” J. Phys. A 4, 827–835 (1971).
  22. E. Jakeman, “Photon correlation,” in Photon Correlation and Light Beating Spectroscopy, H. Z. Cummins and E. R. Pike, eds. (Plenum, New York, 1974), pp. 75–150.
  23. P. N. Pusey, “Statistical properties of scattered radiation,” in Photon Correlation Spectroscopy and Velocimetry, H. Z. Cummins and E. R. Pike, eds. (Plenum, New York, 1977), pp. 45–141.
  24. R. V. Edwards, J. C. Angus, M. J. French, and J. W. Duinning, Jr., “Spectral analysis of the signal from the laser Doppler flowmeter: time-independent systems,” J. Appl. Phys. 42, 837–850 (1971).
  25. N. Lhuissier, G. Gouesbet, and M. E. Weill, “Extensive measurements on soot particles in laminar premixed flames by quasi elastic light scattering spectroscopy,” Combust. Sci. Technol. 67, 17–36 (1989).
  26. R. Weber and G. Schweiger, “Determination of particle size distribution in flowing aerosols by photon correlation spectroscopy,” J. Aerosol Sci. 26, S29–S30 (1995).
  27. E. R. Pike, “Photon statistics,” Riv. Nuovo Cimento 1, 277–314 (1969).
  28. F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York, 1965).
  29. E. Hecht and A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1974).
  30. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  31. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1970).
  32. R. Weber, “Charakterisierung von Aerosolen mit der Photonen-Korrelationsspektroskopie,” Thesis (Ruhr-Universität Bochum, Bochum, Germany, 1997).
  33. A. J. Hurd and P. Ho, “In situ light scattering study of particles synthesized in a RF silane-ammonia glow discharge,” J. Aerosol Sci. 22, 617–635 (1991).
  34. A. Einstein, “Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen,” Ann. Phys. (Paris) 17, 549–560 (1905).
  35. J. Rička, “Dynamic light scattering with single-mode and multimode receivers,” Appl. Opt. 32, 2860–2875 (1993).
  36. G. Schweiger, “Application of photon correlation techniques to ultrafine particle analysis,” in Synthesis and Measurement of Ultrafine Particles, J. C. M. Marijnissen and S. Pratsinis, eds. (Delft U. Press, Delft, The Netherlands, 1993).
  37. D. K. Hutchins, M. H. Harper, and R. L. Felder, “Slip correction measurement for solid spherical particles by modulated dynamic light scattering,” Aerosol Sci. Technol. 22, 202–218 (1995).
  38. K. Schätzel, “Noise on photon correlation data: I. Autocorrelation functions,” Quantum Opt. 2, 287–305 (1990); erratum 2, 467–468 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited