OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 2 — Jan. 10, 1998
  • pp: 233–253

Optimal Usage of Available Wiring Resources in Diffractive-Reflective Optoelectronic Multichip Modules

José L. Cruz-Rivera, D. Scott Wills, Thomas K. Gaylord, and Elias N. Glytsis  »View Author Affiliations


Applied Optics, Vol. 37, Issue 2, pp. 233-253 (1998)
http://dx.doi.org/10.1364/AO.37.000233


View Full Text Article

Acrobat PDF (1344 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Advances in VLSI and optoelectronic multichip module technologiesare enabling the construction of ultracompact massively parallelprocessing systems. The technological parameters that define thewirability and delay characteristics of these technologies have asignificant impact on the system architecture. An analytical modelis presented that allows the design space exploration of theinterconnection networks associated with multinode chips packaged on asingle multichip module substrate. Possible system designs areevaluated for a two-level interconnect with separate <i>k</i>-ary<i>n</i>-cube networks for interchip and intrachipcommunication. The impact of several architectural andtechnological parameters on the optimal network implementation (based on average no-load latency) is analyzed.

© 1998 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(200.4650) Optics in computing : Optical interconnects
(250.0250) Optoelectronics : Optoelectronics

Citation
José L. Cruz-Rivera, D. Scott Wills, Thomas K. Gaylord, and Elias N. Glytsis, "Optimal Usage of Available Wiring Resources in Diffractive-Reflective Optoelectronic Multichip Modules," Appl. Opt. 37, 233-253 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-2-233


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. “National technology roadmap for semiconductors,” Tech. Rep., Semiconductor Industry Association, San José, Calif. (1994).
  2. R. R. Tummala, “Multichip packaging—a tutorial,” Proc. IEEE 80, 1924–1941 (1992).
  3. M. R. Feldman, S. C. Esener, C. C. Guest, and S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Opt. 27, 1742–1751 (1988).
  4. M. R. Feldman and C. C. Guest, “Interconnect density capabilities of computer generated holograms for optical interconnections of VLSI circuits,” Appl. Opt. 28, 3134–3137 (1989).
  5. M. R. Feldman, C. C. Guest, T. J. Drabik, and S. C. Esener, “Comparison between electrical and free-space optical interconnections for fine-grain processor arrays based on interconnect density capabilities,” Appl. Opt. 28, 3820–3829 (1989).
  6. M. R. Feldman and C. C. Guest, “Holograms for optical interconnects for very large scale integrated circuits fabricated by electron-beam lithography,” Opt. Eng. 28, 915–921 (1989).
  7. K. H. Brenner and F. Sauer, “Diffractive–reflective optical interconnects,” Appl. Opt. 27, 4251–4254 (1988).
  8. S. K. Patra, J. Ma, V. H. Ozguz, and S. H. Lee, “Alignment issues in packaging for free-space optical interconnects,” Opt. Eng. 33, 1561–1570 (1994).
  9. J. Fan, B. Catanzaro, V. H. Ozguz, C. K. Cheng, and S. H. Lee, “Design considerations and algorithms for partitioning opto-electronic multichip modules,” Appl. Opt. 34, 3116–3127 (1995).
  10. J. Fan, B. Catanzaro, F. Kiamilev, S. C. Esener, and S. H. Lee, “Architecture of an integrated computer-aided design system for optoelectronics,” Opt. Eng. 33, 1571–1580 (1994).
  11. L. J. Camp, R. Sharma, and M. R. Feldman, “Guided-wave and free-space optical interconnects for parallel-processing systems: a comparison,” Appl. Opt. 33, 6168–6180 (1994).
  12. W. J. Dally, “Performance analysis of k-ary n-cube interconnection networks,” IEEE Trans. Comput. 39, 775–785 (1990).
  13. A. Agarwal, “Limits on interconnection network performance,” IEEE Trans. Parallel Distribut. Syst. 2, 398–412 (1991).
  14. S. Abraham and K. Padmanabhan, “Performance of multicomputer networks under pin-out constraints,” J. Parallel Distribut. Comput. 12, 237–248 (1991).
  15. S. L. Scott and J. R. Goodman, “The impact of pipelined channels on k-ary n-cube networks,” IEEE Trans. Parallel Distribut. Syst. 5, 2–16 (1994).
  16. D. Basak and D. K. Panda, “Designing clustered multiprocessor systems under packaging and technological advancements,” IEEE Trans. Parallel Distribut. Syst. 7, 962–978 (1996).
  17. M. Raksapatcharawong and T. M. Pinkston, “An optical interconnect model for k-ary n-cube wormhole networks,” in Proceedings of the Tenth International Parallel Processing Symposium (IEEE Computer Society, Los Alamitos, Calif., 1996), pp. 666–672.
  18. J. L. Cruz-Rivera, D. S. Wills, T. K. Gaylord, and E. N. Glytsis, “Architectural desin issues for optoelectronic k-ary n-cube interconnection networks,” presented at the 1995 Optical Society of America Annual Meeting, Portland, Oregon, 10–15 September 1995.
  19. J. L. Cruz-Rivera, W. S. Lacy, D. S. Wills, T. K. Gaylord, and E. N. Glytsis, “Performance modeling of optical interconnection technologies for massively parallel processing systems,” in Proceedings of the Third International Workshop on Massively Parallel Processing Using Optical Interconnections, A. Gottlieb, Y. Li, and E. Schenfeld, eds. (IEEE Computer Society, Los Alamitos Calif., 1996), pp. 264–275.
  20. J. L. Cruz-Rivera, D. S. Wills, T. K. Gaylord, and E. N. Glytsis, “Modeling the technology impact on the design of a two-level multicomputer interconnection network,” in Proceedings of the 1996 International Conference on Computer Design (IEEE Computer Society, Los Alamitos Calif., 1996), pp. 165–169.
  21. K. H. Calhoun, C. B. Camperi-Ginestet, and N. M. Jokerst, “Vertical optical communication through stacked silicon wafers using hybrid monolithic thin film ingaasp emitters and detectors,” IEEE Photon. Technol. Lett. 5, 254–257 (1993).
  22. H. B. Bakoglu, Circuits, Interconnections, and Packaging for VLSI (Addison-Wesley, Reading, Mass., 1990).
  23. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, 1968).
  24. D. Zaleta, J. Fan, B. C. Kress, S. H. Lee, and C. K. Cheng, “Optimum placement for optoelectronic multichip modules and the synthesis of diffractive optics for multichip module interconnects,” Appl. Opt. 33, 1444–1456 (1994).
  25. D. S. Wills, H. H. Cat, J. L. Cruz-Rivera, W. S. Lacy, J. M. Baker, J. Eble, A. López-Lagunas, and M. Hopper, “High throughput, low memory applications on the pica architecture,” IEEE Trans. Parallel Distrib. Syst. 8, 1055–1067 (1997).
  26. J. L. Cruz-Rivera, E. V. R. Di Bella, D. S. Wills, T. K. Gaylord, and E. N. Glytsis, “Parallelized formulation of the maximum likelihood-expectation maximization algorithm for fine-grain message-passing architectures,” IEEE Trans. Med. Imag. 14, 758–762 (1995).
  27. G. A. Sai-Halsz, “Performance trends in high-end processors,” Proc. IEEE 83, 20–36 (1995).
  28. V. J. Sferrino, “Multichip module study,” Tech. Rep. TR9545 (MIT Lincoln Laboratory, Lexington, Mass. 1992).
  29. K. Aoyama and A. A. Chien, “The cost of adaptivity and virtual lanes in a wormhole router,” VLSI Design 2(4), 315–333 (1995).
  30. D. C. Edelstein, G. A. Sai-Halsz, and Y.-J. Mii, “VLSI on-chip interconnection performance simulations and measurements,” IBM J. Res. Develop. 39, 383–401 (1995).
  31. W. J. Dally, “Express (c)ubes: improving the performance of k-ary n-cube interconnection networks,” IEEE Trans. Comput. 40, 1016–1023 (1991).
  32. R. T. Chen, H. Lu, D. Robinson, M. Wang, G. Savant, and T. Jannson, “Guided-wave planar optical interconnects using highly multiplexed polymer waveguide holograms,” J. Lightwave Technol. 10, 888–897 (1992).
  33. R. A. Soref, F. Namavar, E. Cortesi, L. Friedman, and R. Lareau, “Vertical 3-d integration of silicon waveguides in Si–SiO2–Si–SiO2–Si structure,” in Microelectronic Interconnects and Packages: Optical and Electrical Technologies, G. Arjavalingam and J. Pazaris, eds., Proc. SPIE 1389, 408–421 (1990).
  34. F. Sauer, “Fabrication of diffractive–reflective optical interconnects for infrared operation based on total internal reflection,” Appl. Opt. 28, 386–388 (1989).
  35. R. K. Kostuk, M. Kato, and Y.-T. Huang, “Polarization properties of substrate mode holographic interconnects,” Appl. Opt. 29, 3848–3854 (1990).
  36. W. S. Lacy, J. L. Cruz-Rivera, and D. S. Wills, “The offset cube: a three-dimensional multicomputer network topology using through-wafer optics,” IEEE Trans. Parallel Distribut. Syst. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited