OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 2 — Jan. 10, 1998
  • pp: 264–275

Terabit optical local area networks for multiprocessing systems

Ted H. Szymanski, Albert Au, Myriam Lafrenière-Roula, Victor Tyan, Boonchuay Supmonchai, James Wong, Belkacem Zerrouk, and Stefan Thomas Obenaus  »View Author Affiliations


Applied Optics, Vol. 37, Issue 2, pp. 264-275 (1998)
http://dx.doi.org/10.1364/AO.37.000264


View Full Text Article

Enhanced HTML    Acrobat PDF (769 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The design of a scalable optical local area network for multiprocessing systems is described. Each workstation has a parallel-fiber-ribbon optical link to a centralized complementary metal-oxide silicon (CMOS) switch core, implemented on a single compact printed circuit board (PCB). When the Motorola Optobus fiber technology is used, each workstation has a data bandwidth of 6.4 Gbits/s to the core. A centralized switch core interconnecting 32 workstations supports a 204-Gbit/s aggregate data bandwidth. The switch core is based on a conventional broadcast-and-select architecture, implemented with parallel CMOS integrated circuits (IC’s). The switch core scales well; by incorporation of the CMOS optoelectronic IC’s with optical input–output, the electrical core can be reduced to a single-chip optoelectronic IC with terabit capacities. A prototype of an optoelectronic switch core has been fabricated and is described. The appeal of the architecture includes its reliance on commercially available parallel-fiber technology, its reliance on the well-developed markets of local area networks and networks of workstations, and its smooth scalability from the electrical to optical domains as technology matures.

© 1998 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4250) Fiber optics and optical communications : Networks
(060.4510) Fiber optics and optical communications : Optical communications

History
Original Manuscript: April 11, 1997
Revised Manuscript: August 11, 1997
Published: January 10, 1998

Citation
Ted H. Szymanski, Albert Au, Myriam Lafrenière-Roula, Victor Tyan, Boonchuay Supmonchai, James Wong, Belkacem Zerrouk, and Stefan Thomas Obenaus, "Terabit optical local area networks for multiprocessing systems," Appl. Opt. 37, 264-275 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-2-264


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. L. Hennessey, D. A. Patterson, Computer Architecture, A Quantatative Approach, 2nd ed. (Morgan-Kauffman, San Francisco, 1995).
  2. T. Lewis, “The next 10,0002 years: parts 1,” IEEE Comput. 29(4), 64–70 (1996);“Part 2,” IEEE Comput. 29(5), 78–86 (1996). [CrossRef]
  3. D. Clark, “Breaking the teraflops barrier,” IEEE Comput. 30(2), 12–14 (1997). [CrossRef]
  4. T. E. Anderson, D. E. Culler, D. A. Patterson, “A case for NOW (networks of workstations),” IEEE Micro. 16, 54–64 (1995). [CrossRef]
  5. OPTOBUS Data Sheet, Logic Integrated Circuits Division, Motorola Inc., Chandler, Ariz. 85248, 1995.
  6. D. B. Schwartz, C. K. Y. Chun, B. M. Foley, D. H. Hartman, M. Lebby, H. C. Lee, C. L. Shieh, S. M. Kuo, S. G. Shook, B. Webb, “A low-cost, high performance optical interconnect,” IEEE Trans. Components, Packag. Manuf. Technol. B 19, 532–539 (1996). [CrossRef]
  7. D. R. Engebretsen, D. M. Kuchta, R. C. Booth, J. D. Crow, W. G. Nation, “Parallel fiber-optic SCI links,” IEEE Micro. 16, 20–26 (1996). [CrossRef]
  8. A. V. Krishnamoorthy, D. A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap,” IEEE J. Sel. Topics Quantum Electron. 2, 55–76 (1996). [CrossRef]
  9. A. V. Krishnamoorthy, J. E. Ford, K. W. Goossen, J. A. Walker, B. Tseng, S. P. Hui, J. E. Cunningham, W. Y. Jan, T. K. Woodward, M. C. Nuss, R. G. Rozier, F. E. Kiamilev, D. A. B. Miller, “The AMOEBA chip: an optoelectronic switch for multiprocessor networking using dense-WDM,” in Proceedings of the Third International Conference on Massively Parallel Processing Using Optical Interconnections (MPPOI’96) (Institute of Electrical and Electronics Engineers Computer Society, Los Alamitos, Calif., 1996), pp. 94–100. [CrossRef]
  10. W. A. Crossland, T. D. Wilkinson, “Optically transparent switching in telecommunications using ferroelectric liquid crystals over silicon VLSI circuits,” in Proceedings of the 1996 IEEE/LEOS Summer Topical Meeting (Institute of Electrical and Electronics Engineers Service Center, Piscataway, N.J., 1996), pp. 22–23.
  11. T. Chaney, J. A. Fingerhut, M. Flucke, J. S. Turner, “Design of a gigabit ATM switch,” Tech. Rep. WUSC-96-07 (Applied Research Laboratory, Department of Computer Science, Washington University, St. Louis, Mo., 1996).
  12. C. B. Stunkel, D. G. Shea, B. Abali, M. G. Atkins, C. A. Bender, D. G. Grice, P. Hochschild, D. J. Joseph, B. J. Nathanson, R. A. Swetz, R. F. Stucke, M. Tsao, P. R. Varker, “The SP2 high-performance switch,” IBM Syst. J. 34, 185–204 (1995). [CrossRef]
  13. J. W. Lockwood, H. Duan, J. J. Morikuni, S. M. Kang, S. Akkineni, R. H. Campbell, “Scalable optoelectronic ATM networks: the iPOINT fully functional testbed,” J. Lightwave Technol. 13, 1093–1103 (1995). [CrossRef]
  14. N. McKeown, M. Izzard, A. Mekkittikul, W. Ellersick, M. Horowitz, “Tiny Tera: a packet switch core,” IEEE Micro. 17, 26–33 (1997). [CrossRef]
  15. M. J. Karol, M. G. Hluchyj, S. P. Morgan, “Input vs. output queueing on a space division packet switch,” IEEE Trans. Commun. COM-35, 1247–1356 (1987).
  16. S. Scott, “The gigaring channel,” IEEE Micro. 16, 27–34 (1996). [CrossRef]
  17. M. Galles, “Spider: a high-speed network interconnect,” IEEE Micro. 17, 34–39 (1997). [CrossRef]
  18. T. E. Anderson, S. S. Owicki, J. B. Saxe, C. P. Thacker, “High-speed switch scheduling for local-area networks,” ACM Trans. Comput. Syst. 11, 319–352 (1993). [CrossRef]
  19. Y. S. Yeh, M. G. Hluchyj, A. S. Acampora, “The knockout switch: a simple modular architecture for high performance packet switching,” IEEE J. Sel. Areas Commun. 5, 1274–1283 (1987). [CrossRef]
  20. Y. Tamir, H. C. Chi, “Symmetric crossbar arbiters for VLSI communication switches,” IEEE Trans. Parallel Distribut. Syst. 4, 13–27 (1993). [CrossRef]
  21. S. J. Hinterlong, A. L. Lentine, D. J. Reiley, J. M. Sasian, R. L. Morrison, R. A. Novotny, M. G. Beckman, D. B. Buchholz, T. J. Cloonan, G. W. Richards, “An ATM switching system demonstration using a 40 Gb/s throughput smart pixel opto-electronic VLSI chip,” in Proceedings of the 1996 IEEE/LEOS Summer Topical Meeting (Institute of Electrical and Electronics Engineers Service Center, Piscataway, N.J., 1996), pp. 47–48.
  22. T. J. Cloonan, “Comparative study of optical and electronic interconnection technologies for large asynchronous transfer mode packet switching applications,” Opt. Eng. 33, 1512–1523 (1994). [CrossRef]
  23. A. L. Lentine, K. W. Goossen, J. A. Walker, L. M. F. Chirovsky, L. A. D’Asaro, S. P. Hui, B. T. Tseng, R. E. Leibenguth, J. E. Cunningham, W. Y. Jan, J. M. Kuo, D. Dahringer, D. Kossives, D. D. Bacon, G. Livescu, R. L. Morrison, R. A. Novotny, D. B. Buchholz, “Optoelectronic VLSI switching chip with greater than 4,000 optical flip-chip-bonded GaAs/AlGaAS MQW modulators and detectors on silicon CMOS circuitry,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 517–518.
  24. T. Robertazzi, ed., Performance Evaluation of High Speed Switching Fabrics and Networks: ATM, Broadband ISDN, and MAN Technology (Institute of Electrical and Electronics Engineers, New York, 1993). [CrossRef]
  25. T. H. Szymanski, B. Supmonchai, “Reconfigurable computing with optical backplanes—an economic argument for optical interconnects,” in Proceedings of the Third International Conference on Massively Parallel Processing Using Optical Interconnections (MPPOI’96) (Institute of Electrical and Electronics Engineers Computer Society, Los Alamitos, Calif., 1996), pp. 321–328. [CrossRef]
  26. D. Bertsekas, R. Gallager, Data Networks, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1992), Chap. 2.
  27. T. H. Szymanski, “Design principles for practical self-routing nonblocking switching networks with O(NlogN) bit complexity,” IEEE Trans. Comput. 46, 1057–1069 (1997). [CrossRef]
  28. Further information will be available in a future paper entitled “Fast self-routing concentrators for optoelectronic IC’s,” by T. H. Szymanski and B. Supmonchai. B. Supmonchai is with the Microelectronics and Computer Systems Laboratory, Department of Electrical Engineering, McGill University, 3480 University Street, Montreal, Quebec, Canada H3A 2A7.
  29. T. H. Szymanski, H. S. Hinton, “Reconfigurable intelligent optical backplane for parallel computing and communications,” Appl. Opt. 35, 1253–1268 (1996). [CrossRef] [PubMed]
  30. H. W. Johnson, M. Graham, High-Speed Digital Design: A Handbook of Black Magic (Prentice-Hall, Englewood Cliffs, N.J., 1993), Chaps. 4–6.
  31. B. Zerrouk, A. Greiner, V. Reibaldi, F. Potter, A. Derieux, R. Marbot, R. Nezamzadeh, “The HIC high speed link technology and associated router,” Real-Time Mag. 3, 73–77 (1996).
  32. W. J. Dally, J. Poulton, “Transmitter equalization for 4-Gbps signaling,” IEEE Micro. 17, 48–56 (1997). [CrossRef]
  33. BiCMOS Design Kit V2.0 for Synopsys, Canadian Microelectronics Corporation, Carruthers Hall, Queen’s University, Kingston, Ontario, K7L 3N6, Canada, 1996.
  34. F. E. E. Frietman, Opto-Electronic Processing and Networking: A Design Study (Delft University of Technology, Faculty of Applied Physics, Lorentzweg 1, NL-2628 CJ Delft, The Netherlands, 1995).
  35. E. M. Hayes, R. D. Snyder, R. Jurrat, S. A. Feld, C. W. Wilmsen, K. D. Choquette, K. M. Geib, H. Q. Hou, “8 × 8 array of smart pixels fabricated through the Vitesse foundry integrating MESFET, MSM, and VCSEL elements,” in Proceedings of the 1996 IEEE/LEOS Summer Topical Meeting (Institute of Electrical and Electronics Engineers Service Center, Piscataway, N.J., 1996), pp. 103–104.
  36. S. Matsuo, T. Nakahara, Y. Kohama, Y. Ohiso, S. Fukushima, T. Kurokawa, “Monolithically integrated photonic switching device using an MSM PD, MESFET’s, and a VCSEL,” IEEE Photonics Technol. Lett. 7, 1165–1167 (1995). [CrossRef]
  37. B. P. Keyworth, D. J. Corazza, J. N. McMullin, “Single-step fabrication of refractive microlens arrays,” Appl. Opt. 36, 2198–2202 (1997). [CrossRef] [PubMed]
  38. “The national technology roadmap for semiconductors,” Semiconductor Industry Association, San Jose, Calif., 1994.
  39. S. Sherif, T. H. Szymanski, H. S. Hinton, “Design and implementation of a field programmable smart pixel array,” in Proceedings of the 1996 IEEE/LEOS Summer Topical Meeting (Institute of Electrical and Electronics Engineers Service Center, Piscataway, N.J., 1996), pp. 78–79.
  40. R. E. Blahut, Theory and Practice of Error Control Codes (Addison-Wesley, Reading, Mass., 1983).
  41. M. A. Neifeld, S. K. Sridharan, “Parallel error correction using spectral Reed–Solomon code,” J. Opt. Commun. 18, 144–150 (1997).
  42. K. S. Trivedi, Probability & Statistics with Reliability, Queueing, and Computer Science Applications (Prentice-Hall, Englewood Cliffs, N.J., 1982), Chaps. 3 and 4.
  43. “FPGA data book,” Reliability Rep. No. 26 (Altera Corp., San Jose, Calif., 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited