OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 2 — Jan. 10, 1998
  • pp: 334–339

Wavelength-Multiplexed Holographic Data Storage by Use of Reflection Geometry with a Cerium-Doped Strontium Barium Niobate Single-Crystal Structure and a Tunable Laser Diode

Tatsuya Kume, Koutarou Nonaka, Manabu Yamamoto, and Shogo Yagi  »View Author Affiliations


Applied Optics, Vol. 37, Issue 2, pp. 334-339 (1998)
http://dx.doi.org/10.1364/AO.37.000334


View Full Text Article

Acrobat PDF (262 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present wavelength-multiplexed holographic recording forhigh-density, high-speed data storage using reflection geometry with ahigh-sensitivity cerium-doped strontium barium niobate single-crystalstructure and second-harmonic generated light from a compact andconvenient wavelength-tunable laser diode. We have recorded andreconstructed wavelength-multiplexed holograms by using wavelengths0.053-nm apart. The theoretical wavelength selectivity of thehologram with the linewidth of the light source taken intoconsideration agrees well with the experimental wavelength selectivity.

© 1998 Optical Society of America

OCIS Codes
(060.4230) Fiber optics and optical communications : Multiplexing
(080.0080) Geometric optics : Geometric optics
(090.0090) Holography : Holography
(160.5320) Materials : Photorefractive materials

Citation
Tatsuya Kume, Koutarou Nonaka, Manabu Yamamoto, and Shogo Yagi, "Wavelength-Multiplexed Holographic Data Storage by Use of Reflection Geometry with a Cerium-Doped Strontium Barium Niobate Single-Crystal Structure and a Tunable Laser Diode," Appl. Opt. 37, 334-339 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-2-334


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. L. Hesselink and M. C. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, S611–S661 (1993).
  2. D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (1995).
  3. A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389–2398 (1996).
  4. G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35, 2403–2417 (1996).
  5. I. McMichael, W. Christran, D. Pletcher, T. Y. Chang, and J. H. Hong, “Compact holographic demonstrator with rapid access,” Appl. Opt. 35, 2375–2379 (1996).
  6. S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, and F. T. S. Yu, “Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser,” Opt. Commun. 101, 317–321 (1993).
  7. D. Lande, J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Digital wavelength-multiplexed holographic data storage system,” Opt. Lett. 21, 1780–1782 (1996).
  8. T. Kume, K. Nonaka, and M. Yamamoto, “High-density optical storage with multiplexed holographic recording method,” IEICE Trans. Electron. E78-C, 1601–1606 (1995).
  9. T. Kume, K. Nonaka, and M. Yamamoto, “Wavelength-multiplexed holographic recording in cerium doped strontium barium niobate by using tunable laser diode,” Jpn. J. Appl. Phys. 35, 448–453 (1996).
  10. G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992).
  11. K. Curtis, C. Gu, and D. Psaltis, “Cross talk in wavelength-multiplexed holographic memories,” Opt. Lett. 18, 1001–1003 (1993).
  12. H. Zhou, F. Zhao, and F. T. S. Yu, “Effects of recording–erasure dynamics of storage capacity of a wavelength-multiplexed reflection-type photorefractive hologram,” Appl. Opt. 33, 4339–4344 (1994).
  13. S. Yagi, T. Imai, and H. Yamazaki, “Measurement of carrier density in Ce doped SBN single crystals and its annealing effect,” in Proceedings of Japan–U.S. Workshop on Functional Fronts in Advanced Ceramics (Boundaries and Defects), Tsukuba, Japan, December 1994 (Science and Technology Agency of Japan, Tokyo, 1994), pp. 126–129.
  14. T. Imai, S. Yagi, H. Yamazaki, and M. Ono, “Heat treatment with quenching of photorefractive Sr0.61Ba0.39Nb2O6:Ce single crystals,” in Proceedings of PR ’97, Chiba, Japan, June 1997 (Optical Society of Japan, Tokyo, 1997), pp. 78–81.
  15. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  16. E. C. Maniloff and K. M. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702–4707 (1991).
  17. M. Segev, D. Engin, A. Yariv, and G. C. Valley, “Temporal evolution of fanning in photorefractive materials,” Opt. Lett. 18, 956–958 (1993).
  18. P. P. Banerjee and R. M. Misra, “Dependence of photorefractive beam fanning on beam parameters,” Opt. Commun. 100, 166–172 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited