OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 2 — Jan. 10, 1998
  • pp: 352–360

Spatial-frequency response of photorefractive phase conjugators with Ce:BaTiO3

Changxi Yang, Katuo Seta, and Yong Zhu  »View Author Affiliations

Applied Optics, Vol. 37, Issue 2, pp. 352-360 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (349 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and demonstrate an interferometric method to measure the spatial-frequency response of photorefractive phase conjugators with Ce:BaTiO3. Two coherent beams are incident on a crystal and form an interference pattern inside the crystal. The two beams undergo stimulated photorefractive backscattering, which creates their corresponding phase conjugations. Then the four waves interact within the crystal. The spatial-frequency resolution of the phase conjugators is measured to be as high as 3750 line pairs/mm by use of the interferometric method. There are several factors that limit the measured spatial resolution when using a U.S. Air Force Resolution Chart. The output modulation deviates from the input modulation for high spatial frequencies. In the presence of a strong additional pump beam, the output modulation of the phase conjugators is almost the same as the input modulation for a wide range of input spatial frequencies. The phase conjugator exhibits a large dynamic range of intensity. We analyze theoretically the modulation transfer function of photorefractive phase conjugators with Ce:BaTiO3 for two mutually coherent beams. The theoretical analysis is in agreement with the experimental results within a small incident-angle region.

© 1998 Optical Society of America

OCIS Codes
(110.4100) Imaging systems : Modulation transfer function
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(190.5040) Nonlinear optics : Phase conjugation

Original Manuscript: February 26, 1997
Revised Manuscript: August 7, 1997
Published: January 10, 1998

Changxi Yang, Katuo Seta, and Yong Zhu, "Spatial-frequency response of photorefractive phase conjugators with Ce:BaTiO3," Appl. Opt. 37, 352-360 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Feinberg, “Real-time edge enhancement using the photorefractive effect,” Opt. Lett. 5, 330–332 (1980);J. Huignard, J. P. Herriau, “Real-time coherent object edge reconstruction with Bi12SiO20 crystals,” Appl. Opt. 17, 2671–2672 (1978);S. Sternklar, S. Weiss, M. Segev, B. Fisher, “Beam coupling locking of lasers using photorefractive four-wave mixing,” Opt. Lett. 11, 528–530 (1986);M. W. Wright, J. G. McInerney, “Injection locking semiconductor lasers with phase conjugate feedback,” Opt. Commun. 110, 689–698 (1994). [CrossRef] [PubMed]
  2. See, for example, P. Günter, J.-P. Huignard, eds., Photorefractive Materials and Their Applications I Vol. 61 of Springer Series in Topics in Applied Physics (Springer-Verlag, Berlin, 1988); Photorefractive Materials and Their Applications II, Vol. 62 of Springer Series in Topics in Applied Physics (Springer-Verlag, Berlin, 1989).
  3. H. Rajbenbach, J.-P. Huignard, P. Günter, “Optical processing with nonlinear photorefractive crystals,” in Nonlinear Photonics, H. M. Gibbs, G. Khitrova, N. Peyghambarian, eds. (Springer-Verlag, Berlin, 1990), Vol. 30, pp. 151–183. [CrossRef]
  4. H. Rajbenbach, “Digital optical processing with photorefractive materials: applications of a parallel half-adder circuit to algorithmic state machines,” J. Appl. Phys. 62, 4675–4681 (1990). [CrossRef]
  5. Y. Zhu, C. Yang, M. Hui, X. Niu, J. Zhang, T. Zhou, X. Wu, “Optical phase conjugation by stimulated backscattering in BaTiO3:Ce crystals,” Appl. Phys. Lett. 64, 2341–2343 (1994). [CrossRef]
  6. C. Yang, Y. Zhu, M. Hui, X. Niu, H. Liu, X. Wu, “High efficiency self-pumped phase conjugation at 633 nm in cerium-doped barium titanate crystals,” Opt. Commun. 109, 318–321 (1995). [CrossRef]
  7. J. Feinberg, “Self-pumped, continuous-wave phase conjugator using internal reflection,” Opt. Lett. 7, 486–488 (1982). [CrossRef] [PubMed]
  8. K. R. MacDonald, J. Feinberg, “Theory of a self-pumped phase conjugator with two coupled interaction regions,” J. Opt. Soc. Am. 73, 548–553 (1983). [CrossRef]
  9. A. A. Zozulya, G. Montemezzani, D. Z. Anderson, “Analysis of total-internal-reflection phase conjugation mirror,” Phys. Rev. A 52, 4167–4175 (1995). [CrossRef] [PubMed]
  10. T. Y. Chang, R. W. Hellwarth, “Optical phase conjugation by backscattering in barium titanate,” Opt. Lett. 10, 408–430 (1985). [CrossRef] [PubMed]
  11. R. A. Mullen, D. J. Vickers, L. West, D. M. Pepper, “Phase conjugation by stimulated photorefractive scattering using a retroreflected seeding beam,” J. Opt. Soc. Am. B 9, 1726–1734 (1992). [CrossRef]
  12. S. X. Dou, H. Gao, J. Zhang, Y. Lian, H. Wang, Y. Zhu, X. Wu, C. Yang, P. Ye, “Studies on formation mechanisms of self-pumped phase conjugation in BaTiO3:Ce crystals at wavelengths from 570 to 680 nm,” J. Opt. Soc. Am. B 12, 1048–1055 (1995). [CrossRef]
  13. S. X. Dou, J. Zhang, M. G. Wang, H. Gao, P. Ye, “Theoretical study on the effect of stimulated photorefractive backscattering in self-pumped phase conjugators,” J. Opt. Soc. Am. B 12, 1056–1064 (1995). [CrossRef]
  14. F. Vachss, P. Yeh, “Image-degradation mechanisms in photorefractive amplifiers,” J. Opt. Soc. Am. B 6, 1834–1844 (1989). [CrossRef]
  15. L. Boutsikaris, F. Davidson, “Two-wave mixing of time-varying nonplane-wave optical fields in photorefractive materials,” Appl. Opt. 32, 1559–1566 (1993). [CrossRef] [PubMed]
  16. M. Carrascosa, “Photorefractive phase conjugation of an image field: fidelity analysis,” Opt. Commun. 91, 481–488 (1992);J. Ma, L. Liu, S. Wu, Z. Wang, L. Xu, B. Shu, “Multibeam coupling in photorefractive SBN:Ce,” Opt. Lett. 13, 1020–1022 (1988). [CrossRef] [PubMed]
  17. A. D. Meigs, B. E. A. Saleh, “Spatial fidelity of photorefractive image correlators,” IEEE J. Quantum Electron. 30, 3025–3032 (1994). [CrossRef]
  18. D. L. Naylor, P. W. Tam, R. W. Hellwarth, “Fidelity of optical phase conjugation by photorefractive degenerate four-wave mixing in barium titanate,” J. Appl. Phys. 72, 5840–5847 (1992);O. Ikeda, “Low-pass, high-pass, and bandpass spatial-filtering characteristics of a BaTiO3 phase conjugator,” J. Opt. Soc. Am. B 4, 1387–1391 (1987). [CrossRef]
  19. O. L. Lyubomudrov, V. V. Shkunov, “Threshold for conjugation of speckle beams by a double phase conjugate mirror,” Sov. J. Quantum Electron. 22, 1027–1031 (1992). [CrossRef]
  20. B. Q. He, P. Yeh, “Multigrating competition effects in photorefractive mutually pumped phase conjugation,” J. Opt. Soc. Am. B 9, 114–120 (1992). [CrossRef]
  21. A. V. Mamaev, V. V. Shkunov, “Self-conjugation of a speckle pump beam in a loop containing a photorefractive crystal,” Sov. J. Quantum Electron. 22, 1036–1040 (1992). [CrossRef]
  22. M. Segev, D. Engin, A. Yariv, G. C. Valley, “Temporal evolution of photorefractive double phase conjugate mirrors,” Opt. Lett. 18, 1828–1830 (1993). [CrossRef] [PubMed]
  23. S. Orlov, M. Segev, A. Yariv, G. C. Valley, “Conjugate fidelity and reflectivity in photorefractive double phase-conjugate mirrors,” Opt. Lett. 19, 578–580 (1994). [CrossRef] [PubMed]
  24. M. P. Petrov, S. I. Stepanov, A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems, Vol. 59 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1991).
  25. P. Buchhave, P. E. Andersen, P. M. Petersen, M. V. Vasnetsov, “Nonlinear grating interactions in photorefractive Bi12SiO20 crystals,” Appl. Phys. Lett. 66, 792–794 (1995). [CrossRef]
  26. P. E. Andersen, P. E. Petersen, P. Buchhave, “Nonlinear combinations of gratings in drift-dominated recording in Bi12SiO20,” J. Opt. Soc. Am. B 12, 2453–2462 (1995). [CrossRef]
  27. P. Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quantum Electron. 25, 484–519 (1989). [CrossRef]
  28. J. E. Millerd, E. M. Garmire, M. B. Klein, “Investigation of photorefractive self-pumped phase-conjugate mirrors in the presence of loss and high modulation depth,” J. Opt. Soc. Am. B 9, 1499–1506 (1992). [CrossRef]
  29. P. Réfrégier, L. Solymar, H. Rajbenbach, J.-P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with a moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985). [CrossRef]
  30. F. Vachss, L. Hesselink, “Nonlinear photorefractive response at high modulation depths,” J. Opt. Soc. Am. A 5, 690–701 (1988). [CrossRef]
  31. L. B. Au, L. Solymar, “Higher harmonic gratings in photorefractive materials at large modulation with moving fringes,” J. Opt. Soc. Am. A 7, 1554–1561 (1990). [CrossRef]
  32. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993), Chap. 4.
  33. M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20, 12–30 (1984). [CrossRef]
  34. C. Yang, Y. Zhang, X. Yi, P. Yeh, Y. Zhu, M. Hui, X. Wu, “Intensity-dependent absorption and photorefractive properties in cerium-doped BaTiO3 crystals,” J. Appl. Phys. 78, 4323–4330 (1995). [CrossRef]
  35. M. Cronin-Golomb, “Whole beam method for photorefractive nonlinear optics,” Opt. Commun. 89, 276–282 (1992). [CrossRef]
  36. A. A. Zozulya, M. Saffman, D. Z. Anderson, “Propagation of light beams in photorefractive media: fanning, self-bending, and formation of self-pumped four-wave-mixing phase conjugation geometries,” Phys. Rev. Lett. 73, 818–821 (1994). [CrossRef] [PubMed]
  37. A. A. Zozulya, M. Saffman, D. Z. Anderson, “Double phase-conjugate mirror: convection and diffraction,” J. Opt. Soc. Am. B 12, 255–264 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited