OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 21 — Jul. 20, 1998
  • pp: 4991–4997

Water-Core Waveguide for Pollution Measurements in the Deep Ultraviolet

Peter Dress, Mathias Belz, Karl F. Klein, Kenneth T. V. Grattan, and Hilmar Franke  »View Author Affiliations


Applied Optics, Vol. 37, Issue 21, pp. 4991-4997 (1998)
http://dx.doi.org/10.1364/AO.37.004991


View Full Text Article

Acrobat PDF (225 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A fiber optic system for water analysis with high transparency in the deep-UV region (λ ≥ 190 nm) is presented. The system consists of special UV-improved silica fibers and a liquid-core waveguide (LCW) as an optical cell. The apertures of both light guides, the silica fiber and the LCW, are matched. The optical losses of the device are investigated experimentally and compared with theory, especially with a standard free-space geometry. The performance of the system with respect to UV absorption spectroscopy is demonstrated for nitrate and chlorine pollution in pure water. For a 203-mm-long LCW the detection limits have been determined to be as low as 22 μg/L for nitrate and 26 μg/L for chlorine.

© 1998 Optical Society of America

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(230.7370) Optical devices : Waveguides
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(300.6540) Spectroscopy : Spectroscopy, ultraviolet

Citation
Peter Dress, Mathias Belz, Karl F. Klein, Kenneth T. V. Grattan, and Hilmar Franke, "Water-Core Waveguide for Pollution Measurements in the Deep Ultraviolet," Appl. Opt. 37, 4991-4997 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-21-4991


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. L. W. Burgess, “Absorption-based sensors,” Sens. Actuators B 29, 10–15 (1995).
  2. J. Stone, “Optical transmission of liquid-core quartz fibers,” Appl. Phys. Lett. 20, 239–240 (1972).
  3. W. Lei, K. Fujiwara, and K. Fuwa, “Source light pathways inside a long capillary cell used colorimetry,” J. Spectrosc. Soc. Jpn. 34, 173–176 (1985).
  4. W. Lei, K. Fujiwara, and K. Fuwa, “Determination of phosphorus in natural waters by long-capillary-cell absorption spectrometry,” Anal. Chem. 55, 951–955 (1983).
  5. P. K. Dasgupta, “Multipath cells for extending dynamic range of optical absorbance measurements,” Anal. Chem. 56, 1401–1403 (1984).
  6. W. Wei, H. Qushe, W. Tao, F. Minzhao, L. Yuanmin, and R. Gouxia, “Absorbance study of liquid-core optical fibers in spectrophotometry,” Anal. Chem. 64, 22–25 (1992).
  7. M. Belz, W. J. O. Boyle, K.-F. Klein, and K. T. V. Grattan, “Smart sensor approach for a fiber-optic based residual chlorine monitor,” Sens. Actuators B 39, 380–385 (1997).
  8. K.-F. Klein, H. Rode, M. Belz, W. J. O. Boyle, and K. T. V. Grattan, “Water quality measurement using fiber optics at wavelengths below 230 nm,” in Chemical, Biochemical, and Environmental Fiber Sensors VIII, R. A. Lieberman, ed., Proc. SPIE 2836, 186–194 (1996).
  9. P. Dress and H. Franke, “A cylindrical liquid-core waveguide,” Appl. Phys. B 63, 12–19 (1996).
  10. P. Dress and H. Franke, “Increasing the accuracy of liquid analysis and pH-value control using a liquid-core waveguide,” Rev. Sci. Instrum. 68, 2167–2171 (1997).
  11. Manufacturer’s data sheet on deuterium lamps (Heraeus Noblelight GmbH, Hanau, Germany).
  12. K.-F. Klein, P. Schliessmann, E. Smolka, G. Hillrichs, M. Belz, W. J. O. Boyle, and K. T. V. Grattan, “UV-stabilized silica based fiber for applications around 200 nm wavelength,” Sens. Actuators B 39, 305–309 (1997).
  13. R. A. Weeks, “The many varieties of E′-centers: a review,” J. Non-Cryst. Solids 179, 1–9 (1994).
  14. K.-F. Klein, G. Hillrichs, P. Karlitschek, and U. Grzesik, “Improved optical fibers for excimer laser applications,” in Lasers in Medicine, W. Weidelich, G. Stehler, and R. Weidelich, eds. (Springer-Verlag, Berlin, 1996), pp. 517–521.
  15. K.-F. Klein, G. Hillrichs, P. Karlitschek, and K. Mann, “Possibilities and limits of optical fibers for the transmission of excimer laser radiation,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 2966, 564–573 (1996).
  16. K.-F. Klein, S. Huettel, L. S. Greek, H. G. Schulze, M. W. Blades, C. A. Haynes, and R. F. B. Turner, “Fiber-guided tunable UV-laserlight system around 215 nm,” in Specialty Fiber Optics for Biomedical and Industrial Applications, A. Katzir and J. A. Harrington, eds., Proc. SPIE 2977, 94–104 (1997).
  17. J. W. Fleming and D. L. Wood, “Refractive index dispersion and related properties in fluorine doped silica,” Appl. Opt. 22, 3102–3104 (1983).
  18. Manufacturer’s data on the deuterium-lamp–fiber system Pittcon 1997 (Heraeus Noblelight GmbH, Hanau, Germany.)
  19. K.-F. Klein, S. Hüttel, U. Kaminski, J. Kirchhof, S. Grimm, and G. Nelson, “Stability and life-time improvements of UV-fibers for new applications,” in Surgical-Assist Systems, M. S. Bogner, S. T. Charles, W. S. Grandfest, J. A. Harrington, A. Katzir, L. S. Lome, M. W. Vannier, R. Von Hanwehr, eds., Proc. SPIE 3262, 150–160 (1998).
  20. Product information on Teflon AF 1600/2400 (Specialty Polymers Division, E. I. du Pont de Nemours & Co., Wilmington, Del., 1990).
  21. I. M. Thomas and J. H. Campbell, “A novel pe uorinated AR and protective coating for KDP and other optical materials,” in Laser-Induced Damage in Optical Materials: 1990, H. E. Bennett, L. L. Chase, A. H. Guenther, B. Newman, and M. J. Soileau, Proc. SPIE 1441, 294–303 (1990).
  22. J. H. Lowry, J. S. Mendlowitz, and N. S. Subbramanian, “Optical characteristics of Teflon AF fluoroplastic materials,” Opt. Eng. 31, 1982–1985 (1992).
  23. M. R. Querry, D. M. Wieliczka, and D. J. Segelstein, “Water (H2O),” in Handbook of Optical Constants of Solids, E. Palik, ed. (Academic, San Diego, Calif., 1991), Vol. II, pp. 1059–1077.
  24. L. P. Rigdon, G. J. Moody, and L. W. Frazer, “Determination of residual chlorine in water with computer automation and a residual-chlorine electrode,” Anal. Chem. 50, 465–468 (1978).
  25. D. F. Marino and J. D. Ingle, Jr., “Determination of chlorine in water by luminol chemiluminescence,” Anal. Chem. 53, 455–458 (1981).
  26. American Public Health Association, Standard Methods for the Examination of Water and Wastewater 14th ed. (American Public Health Association, Washington, D.C., 1975), pp. 304–349.
  27. T. Aoki and M. Munemori, “Continuous flow determination of free chlorine in water,” Anal. Chem. 55, 209–212 (1983).
  28. Z. Mouaziz, R. Briggs, I. Hamilton, and K. T. V. Grattan, “Design and implementation of a fiber-optic-based residual chlorine monitor,” Sens. Actuators B 11, 431–440 (1993).
  29. M. Karlsson, B. Karlberg, and R. J. O. Olsson, “Determination of nitrate in municipal waste water by UV spectroscopy,” Anal. Chim. Acta 312, 107–113 (1995).
  30. Data sheet for the LCK 310/343 chlorine/ozone/chlorine dioxide test kit (Bruno Lange GmbH, Berlin, Germany, 1996).
  31. K. Fujiwara, J. B. Simeonsson, B. W. Smith, and J. D. Winefordner, “Waveguide capillary flow cell for fluorometry,” Anal. Chem. 60, 1065–1068 (1988).
  32. M. A. Stanley, J. Maxwell, M. Forrestal, A. P. Doherty, B. D. MacCraith, D. Diamond, and J. G. Vos, “Comparison of the analytical capabilities of an amperometric and an optical sensor for the determination of nitrate in river and well water,” Anal. Chim. Acta 299, 81–90 (1994).
  33. N. Suzuki and R. Kuroda, “Direct simultaneous determination of nitrate and nitrite by ultraviolet second-derivative spectrophotometry,” Analyst 112, 1077–1079 (1987).
  34. M. Belz, W. J. O. Boyle, K.-F. Klein, and K. T. V. Grattan, “Water quality measurements using fiber optics at wavelengths below 250 nm,” in Proceedings of the XIV International Measurement Confederation World Congress, J. Haltunnen, ed. (Finnish Automation Support, Helsinki, 1997), pp. 151–155.
  35. N. Benjathapanun, W. J. O. Boyle, and K. T. V. Grattan, “Binary encoded 2nd-differential spectrometry using UV-Vis spectra data and neural networks in the estimation of species type and concentration,” Proc. Inst. Electr. Eng. 144, 73–80 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited