OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 22 — Aug. 1, 1998
  • pp: 5271–5283

Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices

Aleksandar D. Rakic, Aleksandra B. Djurišic, Jovan M. Elazar, and Marian L. Majewski  »View Author Affiliations


Applied Optics, Vol. 37, Issue 22, pp. 5271-5283 (1998)
http://dx.doi.org/10.1364/AO.37.005271


View Full Text Article

Acrobat PDF (229 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present models for the optical functions of 11 metals used as mirrors and contacts in optoelectronic and optical devices: noble metals (Ag, Au, Cu), aluminum, beryllium, and transition metals (Cr, Ni, Pd, Pt, Ti, W). We used two simple phenomenological models, the Lorentz–Drude (LD) and the Brendel–Bormann (BB), to interpret both the free-electron and the interband parts of the dielectric response of metals in a wide spectral range from 0.1 to 6 eV. Our results show that the BB model was needed to describe appropriately the interband absorption in noble metals, while for Al, Be, and the transition metals both models exhibit good agreement with the experimental data. A comparison with measurements on surface normal structures confirmed that the reflectance and the phase change on reflection from semiconductor–metal interfaces (including the case of metallic multilayers) can be accurately described by use of the proposed models for the optical functions of metallic films and the matrix method for multilayer calculations.

© 1998 Optical Society of America

Citation
Aleksandar D. Rakic, Aleksandra B. Djurišic, Jovan M. Elazar, and Marian L. Majewski, "Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices," Appl. Opt. 37, 5271-5283 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-22-5271


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. S. Geels, S. W. Corzine, and L. A. Coldren, “InGaAs vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 27, 1359–1367 (1991).
  2. C. J. Chang-Hasnain, J. B. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
  3. K. Iga, “Surface emitting lasers,” Opt. Quant. Electron. 24(2), s97–s104 (1992).
  4. T. Baba, R. Watanabe, K. Asano, F. Koyama, and K. Iga, “Theoretical and experimental estimations of photon recycling effect in light emitting devices with a metal mirror,” Jpn. J. Appl. Phys. 35(1A), 97–100 (1996).
  5. G. Du, K. A. Stair, G. Devane, J. Zhang, R. P. H. Chang, C. W. White, X. Li, Z. Wang, and Y. Liu, “Vertical-cavity surface-emitting laser with a thin metal mirror fabricated by double implantation using a tungsten wire mask,” Semicond. Sci. Technol. 11, 1734–1736 (1996).
  6. G. M. Smith, D. V. Forbes, R. M. Lammert, and J. J. Coleman, “Metalization to asymetric cladding separate confinement heterostructure lasers,” Appl. Phys. Lett. 67, 3847–3849 (1995).
  7. C. H. Wu, P. S. Zory, and M. A. Emanuel, “Contact reflectivity effects on thin p-clad InGaAs single quantum-well lasers,” IEEE Photon. Technol. Lett. 6, 1427–1429 (1994).
  8. H. J. Luo and P. S. Zory, “Distributed feedback coupling coefficient in diode lasers with metallized gratings,” IEEE Photon. Technol. Lett. 2, 614–616 (1990).
  9. E. Hadji, J. Bleuse, N. Magnes, and J. L. Pautrat, “3.2-μm infrared resonant cavity light emitting diode,” Appl. Phys. Lett. 67, 2591–2593 (1995).
  10. N. E. J. Hunt, E. F. Schubert, R. F. Kopf, D. L. Sivco, A. Y. Cho, and G. J. Zydzik, “Increased fiber communications bandwidth from a resonant cavity light emitting diode emitting at λ = 940 nm,” Appl. Phys. Lett. 63, 2600–2602 (1993).
  11. E. F. Schubert, Y.-H. Wang, A. Y. Cho, L.-W. Tu, and G. J. Zydzik, “Resonant cavity light-emitting diode,” Appl. Phys. Lett. 60, 921–923 (1992).
  12. B. Corbett, L. Considine, S. Walsh, and W. M. Kelly, “Resonant cavity light emitting diode and detector using epitaxial liftoff,” IEEE Photon. Technol. Lett. 5, 1041–1043 (1993).
  13. S. T. Wilkinson, N. M. Jokerst, and R. P. Leavitt, “Resonant-cavity-enhanced thin-film AlGaAs/GaAs/AlGaAs LED’s with metal mirrors,” Appl. Opt. 34, 8298–8302 (1995).
  14. B. Corbett, L. Considine, S. Walsh, and W. M. Kelly, “Narrow bandwidth long wavelength resonant cavity photodiodes,” Electron. Lett. 29, 2148–2149 (1993).
  15. M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995).
  16. A. Katz, “Physical and chemical deposition of metals as ohmic contacts to InP and related materials,” in Handbook of Compound Semiconductors, P. H. Holloway and G. E. McGuire, eds. (Noyes Publications, Park Ridge, N.J., 1995), pp. 170–250.
  17. L. Yang, M. C. Wu, K. Tai, T. Tanbun-Ek, and R. A. Logan, “InGaAsP(1.3-μm)/InP vertical-cavity surface-emitting laser grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 56, 889–891 (1990).
  18. A. D. Rakić, “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum,” Appl. Opt. 34, 4755–4767 (1995).
  19. N. W. Ashcroft and K. Sturm, “Interband absorption and the optical properties of polyvalent metals,” Phys. Rev. B 3, 1898–1910 (1971).
  20. C. J. Powell, “Analysis of optical and inelastic-electron-scattering data II. Application to Al,” J. Opt. Soc. Am. 60, 78–93 (1970).
  21. M. Erman, J. B. Theeten, P. Chambon, S. M. Kelso, and D. E. Aspnes, “Optical properties and damage analysis of GaAs single crystals partly amorphized by ion implantation,” J. Appl. Phys. 56, 2664–2671 (1984).
  22. C. M. Herzinger, H. Yao, P. G. Snyder, F. G. Celii, Y. C. Kao, B. Johs, and J. A. Woollam, “Determination of AlAs optical constants by variable-angle spectroscopic ellipsometry and a multisample analysis,” J. Appl. Phys. 77, 4677–4687 (1995).
  23. M. Schubert, V. Gottschalch, C. M. Herzinger, H. Yao, P. G. Snyder, and J. A. Woollam, “Optical-constants of GaxIn1−xP lattice-matched to GaAs,” J. Appl. Phys. 77, 3416–3419 (1995).
  24. C. M. Herzinger, P. G. Snyder, F. G. Celii, Y. C. Kao, D. Chow, B. Johs, and J. A. Woollam, “Studies of thin strained InAs, AlAs, and AlSb layers by spectroscopic ellipsometry,” J. Appl. Phys. 79, 2663–2674 (1996).
  25. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, Jr., R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983).
  26. M. A. Ordal, R. J. Bell, R. W. Alexander, Jr., L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24, 4493–4499 (1985).
  27. E. D. Palik, ed., Handbook of Optical Constants of Solids I (Academic, Orlando, Fla., 1985).
  28. E. D. Palik, ed., Handbook of Optical Constants of Solids II (Academic, San Diego, Calif., 1991).
  29. C. L. Foiles, “Optical properties of pure metals and binary alloys,” in Landolt-Börnstein, Group III: Crystal and Solid State Physics, K.-H. Hellwege and O. Madelung, eds., Vol. 15b of New Series (Springer-Verlag, Berlin, 1985), Chap. 4, pp. 210–489.
  30. L. Ward, The Optical Constants of Bulk Materials and Films, The Adam Hilger Series on Optics and Optoelectronics (Adam Hilger, Bristol, UK, 1988).
  31. R. Brendel and D. Bormann, “An infrared dielectric function model for amorphous solids,” J. Appl. Phys. 71, 1–6 (1992).
  32. A. D. Rakić, J. M. Elazar, and A. B. Djurišić, “Acceptance-probability-controlled simulated annealing: a method for modeling the optical constants of solids,” Phys. Rev. E 52, 6862–6867 (1995).
  33. A. B. Djurišić, J. M. Elazar, and A. D. Rakić, “Modeling the optical constants of solids using genetic algorithms with parameter space size adjustment,” Opt. Commun. 134, 407–414 (1997).
  34. A. B. Djurišić, A. D. Rakić, and J. M. Elazar, “Modeling the optical constants of solids using acceptance-probability-controlled simulated annealing with an adaptive move generation procedure,” Phys. Rev. E 55, 4797–4803 (1997).
  35. H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of aluminum,” Phys. Rev. 132, 1918–1928 (1963).
  36. H. Ehrenreich and H. R. Philipp, “Optical properties of Ag and Cu,” Phys. Rev. 128, 1622–1629 (1962).
  37. M. I. Marković and A. D. Rakić, “Determination of the reflection coefficients of laser light of wavelengths λ ∈ (0.22 μm, 200 μm) from the surface of aluminum using the Lorentz–Drude model,” Appl. Opt. 29, 3479–3483 (1990).
  38. M. I. Marković and A. D. Rakić, “Determination of optical properties of aluminum including electron reradiation in the Lorentz–Drude model,” Opt. Laser Technol. 22, 394–398 (1990).
  39. C. C. Kim, J. W. Garland, H. Abad, and P. M. Raccah, “Modeling the optical dielectric function of semiconductors: extension of the critical-point parabolic-band approximation,” Phys. Rev. B 45, 11, 749–11, 767 (1992).
  40. C. C. Kim, J. W. Garland, and P. M. Raccah, “Modeling the optical dielectric function of the alloy system AlxGa1−xAs,” Phys. Rev. B 47, 1876–1888 (1993).
  41. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1972).
  42. S. Wolfram, The Mathematica Book, 3rd ed. (Wolfram Media/Cambridge U. Press, Cambridge, UK, 1996).
  43. H. A. Macleod, Thin-Film Optical Filters (Adam Hilger, Bristol, UK, 1986).
  44. Z. Knittl, Optics of Thin Films (Wiley, New York, 1976).
  45. D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985), pp. 275–367.
  46. B. Dold and R. Mecke, “Optische Eigenschaften von Edelmetallen, Übergangsmetallen und deren Legierungen im Infrarot (1. Teil),” Optik 22, 435–446 (1965).
  47. P. Winsemius, H. P. Langkeek, and F. F. van Kampen, “Structure dependence of the optical properties of Cu, Ag and Au,” Physica 79B, 529–546 (1975).
  48. G. Leveque, C. G. Olson, and D. W. Lynch, “Reflectance spectra and dielectric functions of Ag in the region of interband transitions,” Phys. Rev. B 27, 4654–4660 (1983).
  49. M. L. Thèye, “Investigation of the optical properties of Au by means of thin semitransparent films,” Phys. Rev. B 2, 3060–3078 (1970).
  50. H. J. Hagemann, W. Gudat, and C. Kunz, “Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,” J. Opt. Soc. Am. 65, 742–744 (1975).
  51. L. R. Canfield and G. Hass, “Reflectance and optical constants of evaporated copper and silver in the vacuum ultraviolet from 1000 to 2000 Å,” J. Opt. Soc. Am. 55, 61–64 (1965).
  52. R. Haensel, C. Kunz, T. Sasaki, and B. Sonntag, “Absorption measurements of copper, silver, tin, gold, and bismuth in the far ultraviolet,” Appl. Opt. 7, 301–306 (1968).
  53. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
  54. D. J. Nash and J. R. Sambles, “Surface plasmon-polariton study of the optical dielectric function of copper,” J. Mod. Opt. 42, 1639–1647 (1995).
  55. K.-H. Lee and K. J. Chang, “First-principles study of the optical properties and the dielectric response of Al,” Phys. Rev. B 49, 2362–2367 (1994).
  56. H. V. Nguyen, I. An, and R. W. Collins, “Evolution of the optical functions of thin-film aluminum: A real-time spectroscopic ellipsometry study,” Phys. Rev. B 47, 3947–3965 (1993).
  57. E. T. Arakawa, T. A. Callcott, and Y.-C. Chang, “Beryllium (Be),” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, San Diego, Calif., 1991), pp. 421–433.
  58. L. W. Bos and D. W. Lynch, “Optical properties of antiferromagnetic chromium and dilute Cr-Mn and Cr-Re alloys,” Phys. Rev. B 2, 4567–4577 (1970).
  59. D. W. Lynch and W. R. Hunter, “An introduction to the data for several metals,” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, San Diego, Calif., 1991) pp. 341–419.
  60. M. M. Kirillova and M. M. Noskov, “Optical properties of chromium,” Phys. Met. Metallogr. 26, 189–192 (1968).
  61. P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9, 5056–5070 (1974).
  62. J. H. Weaver and R. L. Benbow, “Low-energy intraband absorption in Pd,” Phys. Rev. B 12, 3509–3510 (1975).
  63. A. Borghesi and A. Piaggi, “Palladium (Pd),” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, San Diego, Calif., 1991), pp. 469–476.
  64. J. H. Weaver, “Optical properties of Rh, Pd, Ir, and Pt,” Phys. Rev. B 11, 1416–1425 (1975).
  65. A. Y.-C. Yu, W. E. Spicer, and G. Hass, “Optical properties of platinum,” Phys. Rev. 171, 834–835 (1968).
  66. A. Seignac and S. Robin, “Optical properties of thin films of Pt in the far ultraviolet,” Solid State Commun. 11, 217–219 (1972).
  67. G. Hass and W. R. Hunter, “New developments in vacuum-ultraviolet reflecting coatings for space astronomy,” in Space Optics, B. J. Thompson and R. R. Shanon, eds. (National Academy of Sciences, Washington, D.C., 1974), pp. 525–553.
  68. R. Haensel, K. Radler, B. Sonntag, and C. Kunz, “Optical absorption measurements of tantalum, tungsten, rhenium and platinum in the extreme ultraviolet,” Solid State Commun. 7, 1495–1497 (1969).
  69. N. V. Smith, “Photoemission spectra and band structures of d-band metals. III. Model band calculations on Rh, Pd, Ag, Ir, Pt, and Au,” Phys. Rev. B 9, 1365–1376 (1974).
  70. D. W. Lynch, C. G. Olson, and J. H. Weaver, “Optical properties of Ti, Zr, and Hf from 0.15 to 30 eV,” Phys. Rev. B 11, 3617–3624 (1975).
  71. D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 77th ed. (CRC Press, Boca Raton, Fla., 1996).
  72. M. M. Kirillova and B. A. Charikov, “Study of the optical properties of transition metals,” Opt. Spectrosc. USSR 17, 134–135 (1964).
  73. M. M. Kirillova and B. A. Charikov, “Optical properties of titanium in the quantum transition range,” Phys. Met. Metallogr. 15, 138–139 (1963).
  74. G. A. Bolotin, A. N. Voloshinskii, M. M. Kirillova, M. M. Noskov, A. V. Sokolov, and B. A. Charikov, “Optical properties of titanium and vanadium in the infrared range of the spectrum,” Phys. Met. Metallogr. 13, 24–31 (1962).
  75. J. H. Weaver, C. G. Olson, and D. W. Lynch, “Optical properties of crystalline tungsten,” Phys. Rev. B 12, 1293–1297 (1975).
  76. A. D. Rakić and M. L. Majewski, “Modeling the optical dielectric function of GaAs and AlAs: extension of Adachi’s model,” J. Appl. Phys. 80, 5909–5914 (1996).
  77. D. I. Babić, R. P. Mirin, E. L. Hu, and J. E. Bowers, “Characterization of metal mirrors on GaAs,” Electron. Lett. 32, 319–320 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited