OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 23 — Aug. 10, 1998
  • pp: 5377–5385

Balancing Interpixel Cross Talk and Detector Noise to Optimize Areal Density in Holographic Storage Systems

María-P. Bernal, Geoffrey W. Burr, Hans Coufal, and Manuel Quintanilla  »View Author Affiliations


Applied Optics, Vol. 37, Issue 23, pp. 5377-5385 (1998)
http://dx.doi.org/10.1364/AO.37.005377


View Full Text Article

Acrobat PDF (165 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the effects of interpixel cross talk and detector noise on the areal storage density of holographic data storage. A numerical simulation is used to obtain the bit-error rate (BER) as a function of hologram aperture, pixel fill factors, and additive Gaussian intensity noise. We consider the effect of interpixel cross talk at an output pixel from all possible configurations of its 12 closest-neighbor pixels. Experimental verification of this simulation procedure is shown for several fill-factor combinations. The simulation results show that areal density is maximized when the aperture coincides with the zero order of the spatial light modulator (SLM) (Nyquist sampling condition) and the CCD fill factor is large. Additional numerical analysis including finite SLM contrast and fixed-pattern noise show that, if the fixed-pattern noise reaches 6% of the mean signal level, the SLM contrast has to be larger than 6:1 to maintain high areal density. We also investigate the improvement of areal density when error-prone pixel combinations are forbidden by using coding schemes. A trade-off between an increase in areal density and the redundancy of a coding scheme that avoids isolated-on pixels occurs at a code rate of approximately 83%.

© 1998 Optical Society of America

OCIS Codes
(040.1520) Detectors : CCD, charge-coupled device
(050.1220) Diffraction and gratings : Apertures
(050.1960) Diffraction and gratings : Diffraction theory
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(070.2590) Fourier optics and signal processing : ABCD transforms
(210.2860) Optical data storage : Holographic and volume memories

Citation
María-P. Bernal, Geoffrey W. Burr, Hans Coufal, and Manuel Quintanilla, "Balancing Interpixel Cross Talk and Detector Noise to Optimize Areal Density in Holographic Storage Systems," Appl. Opt. 37, 5377-5385 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-23-5377


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. L. Hesselink and M. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–651 (1993).
  2. F. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
  3. J. Heanue, M. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
  4. G. Sincerbox, “Holographic storage revisited,” in Current Trends in Optics, J. C. Dainty, ed. (Academic, New York, 1994), pp. 195–207.
  5. G. W. Burr, F. H. Mok, and D. Psaltis, “Angle and space multiplexed holographic storage using 90 degree geometry,” Opt. Commun. 117, 49–55 (1995).
  6. M.-P. Bernal, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, P. Wimmer, and G. Wittmann, “A precision tester for studies of holographic optical storage materials and recording physics,” Appl. Opt. 35, 2360–2373 (1996).
  7. G. W. Burr, F. H. Mok, and D. Psaltis, “Storage of 10,000 holograms in LiNbO3:Fe,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CMB7, p. 9.
  8. G. W. Burr, J. Ashley, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, and B. Marcus, “Modulation coding for pixel-matched holographic data storage,” Opt. Lett. 22, 639–641 (1997).
  9. G. Barbastathis, “Intelligent holographic databases,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1998).
  10. J. Hong, I. McMichael, and J. Ma, “Influence of phase masks on cross talk in holographic memory,” Opt. Lett. 21, 1694–1696 (1996).
  11. M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, E. Oesterschulze, R. M. Shelby, G. T. Sincerbox, and M. Quintanilla, “Effects of multilevel phase masks on interpixel cross talk in digital holographic data storage,” Appl. Opt. 36, 3107–3115 (1997).
  12. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  13. G. W. Burr, “Volume holographic storage using the 90° geometry,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1996).
  14. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, New York, 1992).
  15. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge U. Press, New York, 1989).
  16. G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, and C. M. Jefferson, “Noise reduction of page-oriented data storage by inverse filtering during recording,” Opt. Lett. 23, 289–291 (1998).
  17. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Channel codes for digital holographic data storage,” J. Opt. Soc. Am. A 12, 2432–2439 (1995).
  18. J. Ashley and B. Marcus, “Two-dimensional low-pass filtering codes,” IEEE Trans. Commun. 46, 724–727 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited