OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 24 — Aug. 20, 1998
  • pp: 5631–5639

Feasibility Study of Synthetic Aperture Infrared Laser Radar Techniques for Imaging of Static and Moving Objects

Shin Yoshikado and Tadashi Aruga  »View Author Affiliations


Applied Optics, Vol. 37, Issue 24, pp. 5631-5639 (1998)
http://dx.doi.org/10.1364/AO.37.005631


View Full Text Article

Acrobat PDF (233 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Techniques for two types of 10-μm band synthetic aperture infrared laser radar using a hypothetical reference point target (RPT) are presented. One is for imaging static objects with a single two-dimensional scanning aperture. Through the simple manipulation of a reference wave phase, a desired image can be obtained merely by the two-dimensional Fourier transformation of the correlator output between the intermediate frequency signals of the reference and object waves. The other, with a one-dimensional aperture array, is for moving objects that pass across the array direction without attitude change. We performed imaging by using a two-dimensional RPT correlation method. We demonstrate the capability of these methods for imaging and evaluate the necessary conditions for signal-to-noise ratio and random phase errors in signal reception through numerical simulations in terms of feasibility.

© 1998 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.3010) Image processing : Image reconstruction techniques
(110.1220) Imaging systems : Apertures
(110.3080) Imaging systems : Infrared imaging
(110.5100) Imaging systems : Phased-array imaging systems
(280.6730) Remote sensing and sensors : Synthetic aperture radar

Citation
Shin Yoshikado and Tadashi Aruga, "Feasibility Study of Synthetic Aperture Infrared Laser Radar Techniques for Imaging of Static and Moving Objects," Appl. Opt. 37, 5631-5639 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-24-5631


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, and E. C. Poggio, “Developments in radar imaging,” IEEE Trans. Aerosp. Electron. Syst. AES-20, 363–400 (1984).
  2. L. J. Cutrona, “Synthetic aperture radar,” in Radar Handbook, M. I. Skolnik, ed. (McGraw-Hill, New York, 1970).
  3. F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing (Addison-Wesley, Reading, Mass., 1982).
  4. C. A. Wiley, “Synthetic aperture radars,” IEEE Trans. Aerosp. Electron. Syst. AES-21, 440–443 (1985).
  5. G. W. Swenson and N. C. Mathur, “The interferometer in radio astronomy,” Proc. IEEE 56, 2114–2130 (1968).
  6. C. van Schooneveld, ed., Image Formation from Coherence Functions in Astronomy, in Proceedings of the International Astronomical Union Colloquium No. 49 (Reidel, Dordrecht, The Netherlands, 1979).
  7. J. C. Marron and K. S. Schroeder, “Three-dimensional lensless imaging using laser frequency diversity,” Appl. Opt. 31, 255–262 (1992).
  8. W. M. Brown and R. J. Fredricks, “Range-Doppler imaging with motion through resolution cells,” IEEE Trans. Aerosp. Electron. Syst. AES-5, 98–102 (1969).
  9. J. L. Walker, “Range-Doppler imaging of rotating objects,” IEEE Trans. Aerosp. Electron. Syst. AES-16, 23–52 (1980).
  10. J. R. Fienup, “Gradient-search phase-retrieval algorithm for inverse synthetic-aperture radar,” Opt. Eng. 33, 3237–3242 (1994).
  11. H. Wu and G. Y. Delisle, “Precision tracking algorithms for ISAR imaging,” IEEE Trans. Aerosp. Electron. Syst. 32, 243–254 (1996).
  12. T. G. Moore, “A new algorithm for the formation of ISAR images,” IEEE Trans. Aerosp. Electron. Syst. 32, 714–721 (1996).
  13. C. C. Aleksoff, “Interferometric two-dimensional imaging of rotating objects,” Opt. Lett. 1, 54–55 (1977).
  14. C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klooster, K. S. Schroeder, R. M. Majewski, J. O. Abshier, and M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer and R. C. Harney, eds., Proc. SPIE 783, 29–40 (1987).
  15. S. E. Clark, L. R. Jones, and L. F. DeSandre, “Coherent array optical imaging,” Appl. Opt. 30, 1804–1810 (1991).
  16. P. S. Idell and D. G. Voelz, “Nonconventional laser imaging using sampled-aperture receivers,” Opt. Photon. News 3:4, 8–15 (1992).
  17. A. D. Cenzo, “A new look at nonseparable synthetic aperture radar processing,” IEEE Trans. Aerosp. Electron. Syst. 24, 218–224 (1988).
  18. G. Franceschetti and G. Schirinzi, “A SAR processor based on two-dimensional FFT codes,” IEEE Trans. Aerosp. Electron. Syst. 26, 356–366 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited