OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 24 — Aug. 20, 1998
  • pp: 5659–5671

Pure rotational coherent anti-Stokes Raman scattering: comparison of evaluation techniques for determining single-shot simultaneous temperature and relative N2–O2 concentration

Martin Schenk, Albert Thumann, Thomas Seeger, and Alfred Leipertz  »View Author Affiliations


Applied Optics, Vol. 37, Issue 24, pp. 5659-5671 (1998)
http://dx.doi.org/10.1364/AO.37.005659


View Full Text Article

Enhanced HTML    Acrobat PDF (313 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The accuracy and precision of time-resolved simultaneous temperature and O2-concentration measurements in binary N2–O2 mixtures by single-pulse dual-broadband pure rotational coherent anti-Stokes Raman scattering (CARS) have been investigated. We present a detailed comparison of the applicability of six evaluation procedures to measurements of air in a temperature range 300–2050 K. Special emphasis is put on the dependence of the results on experimental restrictions and distortions. This comparison includes the least-sum-of-squared-differences fit (LSF) in the frequency space obtained by use of three different kinds of weighting with respect to signal intensity and in Fourier space by use of the complex or the cosine Fourier transformation, both of which permit a great reduction in the number of data points necessary for multidimensional evaluation. Additionally, a cross-correlation technique is tested that, to the best of our knowledge, was not previously applied to pure rotational CARS. We also present the results of measurements directed to the determination of low O2-concentration levels that were performed for various binary mixtures (1.0–15.6% O2) and for natural air within a temperature range of 300–773 K. A comparison is given for the three evaluation techniques that have proved most promising for the high-temperature investigations, i.e., the constant and the inverse weighted LSF in frequency space and the Fourier analysis technique.

© 1998 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(190.5650) Nonlinear optics : Raman effect
(280.1740) Remote sensing and sensors : Combustion diagnostics
(280.2470) Remote sensing and sensors : Flames
(290.5860) Scattering : Scattering, Raman
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering

History
Original Manuscript: January 5, 1998
Published: August 20, 1998

Citation
Martin Schenk, Albert Thumann, Thomas Seeger, and Alfred Leipertz, "Pure rotational coherent anti-Stokes Raman scattering: comparison of evaluation techniques for determining single-shot simultaneous temperature and relative N2–O2 concentration," Appl. Opt. 37, 5659-5671 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-24-5659


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. A. Rahn, S. C. Johnston, R. L. Farrow, P. L. Mattern, “CARS thermometry in an internal combustion engine,” in Temperature: Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (American Institute of Physics, New York, 1982), Vol. 5, pp. 609–613.
  2. R. P. Lucht, R. E. Teets, R. M. Green, R. E. Palmer, C. R. Ferguson, “Unburned gas temperatures in an internal combustion engine. I. CARS temperature measurements,” Combust. Sci. Technol. 55, 41–61 (1987). [CrossRef]
  3. M. J. Cottereau, F. Grisch, J. J. Marie, “CARS measurements of temperature and species concentrations in an IC engine,” Appl. Phys. B 51, 63–66 (1990). [CrossRef]
  4. T. Nakada, T. Itoh, Y. Takagi, “Application of CARS to development of high compression ratio spark ignition engine,” (Society of Automotive Engineers, Warrendale, Pa., 1993).
  5. K. Kajiyama, K. Sajiki, H. Katakoka, S. Maeda, C. Hirose, “N2 CARS thermometry in diesel engine,” (Society of Automotive Engineers, Warrendale, Pa., 1982).
  6. R. Bombach, B. Hemmerlein, W. Kreutner, “CARS temperature measurements in a lean, turbulent, 120 kW natural gas flame,” in non-intrusive combustion diagnostics, K. K. Kuo, T. P. Parr, eds. (Begell, New York, 1994), pp. 145–151.
  7. R. Lückenrath, M. Woyde, W. Meier, W. Stricker, U. Schnell, H.-J. Magel, J. Görres, H. Spliethoff, H. Maier, “Comparison of coherent anti-Stokes Raman-scattering thermometry with thermocouple measurements and model predictions in both natural-gas and coal-dust flames,” Appl. Opt. 34, 3303–3312 (1995). [CrossRef]
  8. S. Kampmann, T. Seeger, A. Leipertz, “Simultaneous coherent anti-Stokes Raman scattering and two-dimensional laser Rayleigh thermometry in a contained technical swirl combustor,” Appl. Opt. 34, 2780–2786 (1995). [CrossRef] [PubMed]
  9. A. C. Eckbreth, T. J. Anderson, J. A. Shirley, “Laser Raman diagnostics for propulsion systems development,” Ber. Bunsenges. Phys. Chem. 97, 1597–1608 (1993). [CrossRef]
  10. D. A. Greenhalgh, D. R. Williams, D. R. Baker, “The development and application of the CARS technique for in-cylinder IC engine Thermometry,” presented at the International Symposium on Automotive Technology and Automization (ISATA), Florence, Italy (1987).
  11. D. R. Snelling, R. A. Sawchuk, G. J. Smallwood, “Multichannel light detectors and their use for CARS spectroscopy,” Appl. Opt. 23, 4083–4089 (1984). [CrossRef] [PubMed]
  12. D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, T. Parameswaran, “Precision of multiplex CARS temperatures using both single-mode and multimode pump lasers,” Appl. Opt. 26, 99–110 (1987). [CrossRef] [PubMed]
  13. S. Kröll, M. Alden, P.-E. Bengtsson, C. Löfström, “An evaluation of precision and systematic errors in vibrational CARS thermometry,” Appl. Phys. B 49, 445–453 (1989). [CrossRef]
  14. D. R. Snelling, G. J. Smallwood, T. Parameswaran, “Effect of detector nonlinearity and image persistence on CARS derived temperatures,” Appl. Opt. 28, 3233–3241 (1989). [CrossRef] [PubMed]
  15. B. Attal-Tretout, P. Bouchardy, P. Magre, M. Pealat, J. P. Taran, “CARS in combustion: prospects and problems,” Appl. Phys. B 51, 17–24 (1990). [CrossRef]
  16. T. Seeger, “Anwendungsvergleich von Vibrations- und Rotations-CARS in der technischen Verbrennung,” Berichte zur Energie- und Verfahrenstechnik (ESYTEC Energie und Systemtechnik GmbH, Erlangen, Germany, 1994), Vol. 94.1.
  17. A. C. Eckbreth, G. M. Dobbs, J. H. Stufflebeam, P. A. Tellex, “CARS temperature and species measurements in augmented jet engine exhausts,” Appl. Opt. 23, 1328–1339 (1984). [CrossRef] [PubMed]
  18. M. Pealat, P. Bouchardy, M. Lefebvre, J.-P. Taran, “Precision of multiplex CARS temperature measurements,” Appl. Opt. 24, 1012–1022 (1985). [CrossRef] [PubMed]
  19. J. Zheng, J. B. Snow, D. V. Murphy, A. Leipertz, R. K. Chang, R. L. Farrow, “Experimental comparison of broadband rotational coherent anti-Stokes Raman scattering (CARS) and broadband vibrational CARS in a flame,” Opt. Lett. 9, 341–343 (1984). [CrossRef] [PubMed]
  20. A. Leipertz, E. Magens, T. Lasser, “Flame temperature measurements using a novel rotational CARS analysis technique,” (American Institute of Aeronautics and Astronautics, New York, 1985).
  21. T. Lasser, E. Magens, A. Leipertz, “Gas thermometry by Fourier analysis of rotational CARS,” Opt. Lett. 10, 535–537 (1985). [CrossRef] [PubMed]
  22. S. Kröll, P.-E. Bengtsson, M. Alden, D. Nilsson, “Is rotational CARS an alternative to vibrational CARS for thermometry?” Appl. Phys. B 51, 25–30 (1990). [CrossRef]
  23. P.-E. Bengtsson, L. Martinsson, M. Alden, S. Kröll, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129–140 (1992). [CrossRef]
  24. E. Magens, “Nutzung von Rotations-CARS zur Temperatur- und Konzentrationsmessung in Flammen,” Berichte zur Energie- und Verfahrenstechnik (ESYTEC Energie und Systemtechnik GmbH, Erlangen, Germany, 1993), Vol. 93.2.
  25. P.-E. Bengtsson, L. Martinsson, M. Alden, B. Johansson, B. Lassesson, K. Marfori, G. Lundholm, “Dual broadband rotational CARS measurements in an IC engine,” in Proceedings of the Twenty-Fifth International Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1992), pp. 1735–1742.
  26. L. Martinsson, P.-E. Bengtsson, M. Alden, “Oxygen concentration and temperature measurements in N2–O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996). [CrossRef]
  27. T. Seeger, A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt. 35, 2665–2671 (1996). [CrossRef] [PubMed]
  28. A. Thumann, M. Schenk, J. Jonuscheit, T. Seeger, A. Leipertz, “Simultaneous temperature and relative nitrogen–oxygen concentration measurements in air using pure rotational coherent anti-Stokes Raman scattering for temperatures up to 2050 K,” Appl. Opt. 36, 3500–3505 (1997). [CrossRef] [PubMed]
  29. M. Alden, P.-E. Bengtsson, H. Edner, S. Kröll, D. Nilsson, “Rotational CARS: a comparison of different techniques with emphasis on accuracy in temperature determination,” Appl. Opt. 28, 3206–3219 (1989). [CrossRef] [PubMed]
  30. J. Bood, P.-E. Bengtsson, F. Mauss, K. Burgdorf, I. Denbratt, “Knock in spark-ignition engines: end-gas temperature measurements using rotational CARS and detailed kinetic calculations of autoignition process,” (Society of Automotive Engineers, Warrendale, Pa., 1997).
  31. E. Magens, A. Leipertz, “Evaluation of accumulated pure rotational CARS spectra taken in mixing regions of flames,” in Coherent Raman Spectroscopy: Applications and New Developments, E. Castellucci, R. Righini, P. Foggi, eds. (World Scientific, Singapore, 1993), pp. 141–146.
  32. L. Martinsson, P.-E. Bengtsson, M. Alden, S. Kröll, “Applications for rotational CARS for temperature measurements at high pressure and in particle-laden flames,” in Temperature: Its Measurements in Science and Industry, J. F. Schooley ed. (American Institute of Physics, New York, 1992), Vol. 6, pp. 679–684.
  33. L. Martinsson, P.-E. Bengtsson, M. Alden, S. Kröll, J. Bonamy, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993). [CrossRef]
  34. G. N. Robertson, A. Roblin, “Analysis of CARS spectra using Fourier transform techniques,” in Coherent Raman Spectroscopy: Applications and New Developments, E. Castellucci, R. Righini, P. Foggi, eds. (World Scientific, Singapore, 1993), pp. 39–42.
  35. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, Amsterdam, 1996).
  36. D. A. Greenhalgh, “Quantitative CARS spectroscopy,” in Advances in Non-Linear Spectroscopy, R. J. H. Clark, R. E. Hester, eds., Vol. 15 of Advances in Spectroscopy (Wiley, New York, 1988), pp. 193–251.
  37. A. Leipertz, “Temperaturbestimmung in Gasen mittels linearer und nichtlinearer Raman-Prozesse,” Habilitation thesis (Ruhr-Universität Bochum, Bochum, Germany, 1984).
  38. M. A. Yuratich, “Effects of laser linewidth on coherent anti-Stokes Raman spectroscopy,” Mol. Phys. 38, 625–655 (1979). [CrossRef]
  39. D. V. Murphy, “Broad-band rotational CARS thermometry in nitrogen gas,” Ph.D. dissertation (Yale University, New Haven, Conn., 1981).
  40. J. D. Drake, “Rotational Raman intensity-correction factors due to vibrational anharmonicity: their effect on temperature measurements,” Opt. Lett. 7, 440–441 (1982). [CrossRef] [PubMed]
  41. A. E. DePristo, S. D. Augustin, R. Ramaswany, H. Rabitz, “Quantum number and energy scaling for nonreactive collisions,” J. Chem. Phys. 71, 850–865 (1979). [CrossRef]
  42. T. Lasser, “An alternative method for CARS-spectra calculation,” Opt. Commun. 35, 447–450 (1980). [CrossRef]
  43. D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Indust. Appl. Math. 11, 431–441 (1963). [CrossRef]
  44. J. J. Moore, B. S. Garbow, K. E. Hillstrom, User Guide for MINPACK-1, Rep. ANL-80-74 (Argonne National Laboratory, Argonne, Ill., 1980).
  45. G. Engelen-Müllges, F. Reutter, Numerik-Algorithmen mit FORTRAN 77-Programmen, 7th ed. (Bibliographisches Institut Wissenschaftsverlag, Mannheim, Germany, 1993).
  46. E. O. Brigham, The Fast Fourier Transform (Prentice-Hall, Englewood Cliffs, N.J., 1974).
  47. P. Haberäcker, Digitale Bildverarbeitung-Grundlagen und Anwendungen, 2nd ed. (Carl Hanser Verlag, Munich, 1987).
  48. G. N. Robertson, Department of Physics, University of Cape Town, Rondebosch, South Africa (personal communications, 1997).
  49. G. L. Squires, Messergebnisse und ihre Auswertung (de Gruyter, Berlin, 1971).
  50. J. R. Taylor, An Introduction to Error Analysis (University Science, Sausalito, Calif., 1982).
  51. C. H. Westergaard, P. Buchave, “PIV: comparison of three autocorrelation techniques,” in Fifth International Conference on Laser Anemometry: Advances and Applications, P. J. deGroot, ed., Proc. SPIE2052, 535–541 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited