OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 25 — Sep. 1, 1998
  • pp: 6006–6010

Ice-front propagation monitoring in tissue by the use of visible-light spectroscopy

David M. Otten, Boris Rubinsky, Wai-Fung Cheong, and David A. Benaron  »View Author Affiliations


Applied Optics, Vol. 37, Issue 25, pp. 6006-6010 (1998)
http://dx.doi.org/10.1364/AO.37.006006


View Full Text Article

Enhanced HTML    Acrobat PDF (364 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For demonstrating that visible-light spectroscopy can be used for ice-front detection within freezing tissue, proton magnetic resonance images were correlated to time-evolving transmittance spectra as an ice front progressed across a tissue sample. The experimental apparatus was designed to be compatible with magnetic resonance imaging, to produce one-dimensional freezing, and to allow both reflectance and transillumination emitter–detector configurations about a normally progressing planar ice front in chicken muscle. This demonstration has potentially important medical applications in cryopreservation (freezing of biological materials for preservation) and cryosurgery (destruction of tissue by freezing).

© 1998 Optical Society of America

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.6930) Medical optics and biotechnology : Tissue
(300.6550) Spectroscopy : Spectroscopy, visible
(350.5500) Other areas of optics : Propagation

History
Original Manuscript: November 3, 1997
Revised Manuscript: February 2, 1998
Published: September 1, 1998

Citation
David M. Otten, Boris Rubinsky, Wai-Fung Cheong, and David A. Benaron, "Ice-front propagation monitoring in tissue by the use of visible-light spectroscopy," Appl. Opt. 37, 6006-6010 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-25-6006


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Mazur, “Cryobiology: the freezing of biological systems,” Science 168, 939–949 (1970). [CrossRef] [PubMed]
  2. D. E. Pegg, A. K. Karow, eds., The Biophysics of Organ Cryopreservation, NATO ASI Series A, 147 (Plenum, New York, 1988). [CrossRef]
  3. G. Onik, C. Cooper, H. I. Goldenberg, A. A. Moss, B. Rubinsky, M. Christianson, “Ultrasonic characteristics of frozen liver,” Cryobiology 21, 321–328 (1984). [CrossRef] [PubMed]
  4. B. Rubinsky, “Cryosurgery imaging with ultrasound,” Mech. Eng. 108, 48–51 (1986).
  5. G. Onik, B. Rubinsky, G. Watson, R. J. Ablin, Percutaneous Prostate Cryoablation (Quality Medical, St. Louis, 1994).
  6. B. Rubinsky, J. C. Gilbert, G. M. Onik, H. S. Roos, S. T. S. Wong, K. M. Brennan, “Monitoring cryosurgery in the brain and in the prostate with proton NMR,” Cryobiology 30, 191–199 (1993). [CrossRef] [PubMed]
  7. D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463–1466 (1993). [CrossRef] [PubMed]
  8. D. A. Benaron, W-F. Cheong, D. K. Stevenson, “Tissue optics,” Science 276, 2002–2003 (1997). [CrossRef] [PubMed]
  9. F. F. Jöbsis, “Noninvasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1266 (1977). [CrossRef] [PubMed]
  10. P. W. McCormick, M. Stewart, G. Lewis, M. Dujovny, J. I. Ausman, “Intracerebral penetration of infrared light,” J. Neurosurg. 76, 315–318 (1992). [CrossRef] [PubMed]
  11. L. O. Svaasand, R. Ellingsen, “Optical properties of human brain,” J. Cereb. Blood Flow Metabol. 3, 293–299 (1983).
  12. G. J. Tearney, M. E. Brezinski, B. E. Bouma, B. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997). [CrossRef]
  13. J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: a time-of-flight imaging system,” Med. Phys. 17, 351–356 (1990). [CrossRef] [PubMed]
  14. A. D. Edwards, “Cotside measurement of cerebral blood flow in ill preterm infants by near-infrared spectroscopy,” Lancet 2, 770–771 (1988). [CrossRef] [PubMed]
  15. D. S. Smith, W. J. Levy, S. Carter, N. Wang, M. Haida, B. Chance, “Time resolved spectroscopy and the determination of photon scattering, pathlength, and brain vascular hemoglobin saturation in a population of normal volunteers,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1988, 511–516 (1993). [CrossRef]
  16. R. A. De Blasi, S. Fantini, M. A. Franceschini-Fantini, B. F. Barbieri, M. Ferrari, E. Gratton, “Cerebral and muscle oxygen saturation measurement by a frequency-domain near-infrared spectroscopic technique,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 868–874 (1995). [CrossRef]
  17. J. P. van Houten, D. A. Benaron, S. Spilman, D. K. Stevenson, “Imaging brain injury using time-resolved near infrared light scanning,” Pediatr. Res. 39, 470–476 (1996). [CrossRef] [PubMed]
  18. S. P. Gopinath, S. C. Roverson, R. G. Grossman, B. Chance, “Near infrared spectroscopic localization of intracranial hematomas,” J. Neurosurg. 79, 43–47 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited