OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 25 — Sep. 1, 1998
  • pp: 6026–6036

Mapping of Birefringence and Thermal Damage in Tissue by use of Polarization-Sensitive Optical Coherence Tomography

Klaus Schoenenberger, Bill W. Colston, Duncan J. Maitland, Luiz B. Da Silva, and Matthew J. Everett  »View Author Affiliations


Applied Optics, Vol. 37, Issue 25, pp. 6026-6036 (1998)
http://dx.doi.org/10.1364/AO.37.006026


View Full Text Article

Acrobat PDF (477 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate cross-sectional birefringence- and polarization-independent backscatter imaging of laser-induced thermal damage in porcine myocardium in vitro, using a polarization-sensitive optical coherence tomography system. We compare the generated images with histological sections of the tissue and demonstrate that birefringence is a more sensitive indicator of thermal damage than is backscattered light. Loss of birefringence in thermally damaged regions is quantified and shown to have significant contrast with undamaged sections of the tissue. A detailed theoretical analysis of the birefringence measurements is provided, including a calculation of the systematic errors associated with background noise, system imperfections, and tissue dichroism.

© 1998 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.4730) Medical optics and biotechnology : Optical pathology

Citation
Klaus Schoenenberger, Bill W. Colston, Duncan J. Maitland, Luiz B. Da Silva, and Matthew J. Everett, "Mapping of Birefringence and Thermal Damage in Tissue by use of Polarization-Sensitive Optical Coherence Tomography," Appl. Opt. 37, 6026-6036 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-25-6026


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. L. S. Bass and M. R. Treat, “Laser tissue welding: a comprehensive review of current and future clinical applications,” Lasers Surg. Med. 17, 315–349 (1995).
  2. G. J. Hruza, and J. S. Dover, “Laser skin resurfacing,” Arch. Dermatol. 132, 451–455 (1996).
  3. A. Masters and S. G. Bown, “Interstitial laser hyperthermia in the treatment of tumors,” Lasers Med. Sci. 5, 129–135 (1990).
  4. C. Cohen, “Optical rotation and helical polypeptide chain configuration in collagen and gelatin,” J. Biophys. Biochem. Cytol. 1, 203–214 (1955).
  5. K. Yoshioka and C. T. O’Konski, “Electric properties of macromolecules. IX. Dipole moment, polarizability, and optical anisotropy factor of collagen in solution from electric birefringence,” Biopolymers 4, 499–507 (1966).
  6. S. Thomsen, J. A. Pearce, and W. F. Cheong, “Changes in birefringence as markers of thermal damage in tissues,” IEEE Trans. Biomed. Eng. 36, 1174–1179 (1989).
  7. J. A. Pearce, S. Thomsen, H. Vijverber, and T. McMurray, “Kinetics for birefringence changes in thermally coagulated rat skin collagen,” in Lasers in Otolaryngology, Dermatology, and Tissue Welding, S. M. Shapshay, R. R. Anderson, J. V. White, R. A. White, and L. S. Bass, eds., Proc. SPIE 1876, 180–186 (1993).
  8. T. McMurray, A. Han, and J. A. Pearce, “Thermal damage quantification from tissue birefringence image analysis,” in Biomedical Image Processing and Biomedical Visualization, R. S. Acharya and D. B. Goldgof, eds., Proc. SPIE 1905, 140–151 (1993).
  9. D. J. Maitland and J. T. Walsh, Jr., “Interference-based linear birefringence measurement of thermally-induced changes in collagen,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE 2134A, 304–308 (1994).
  10. D. J. Maitland and J. T. Walsh, Jr., “Quantitative measurements of linear birefringence during the heating of native collagen,” Lasers Surg. Med. 20, 310–318 (1997).
  11. E. Collett, Polarized light: Fundamentals and Applications, Vol. 36 of Optical Engineering Series (Dekker, New York, 1993).
  12. G. J. van Blokland, “Ellipsometry of the human retina in vivo: preservation of polarization,” J. Opt. Soc. Am. A 2, 72–75 (1985).
  13. H. B. klein Brink, and G. J. van Blokland, “Birefringence of the human foveal area assessed in vivo with Mueller-matrix ellipsometry,” J. Opt. Soc. Am. A 5, 49–57 (1988).
  14. C. Brosseau, D. Bicout, A. S. Martinez, and J. M. Schmitt, “Depolarization behavior of multiple scattered light from an optically dense random medium,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano and J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 50–54.
  15. D. Huang, E. A. Swanson, C. P. Lin, J. S. Shuman, W. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
  16. J. F. deBoer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
  17. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. 9, 903–98 (1992).
  18. M. J. Everett, K. Schoenenberger, B. W. Colston, Jr., and L. B. DaSilva, “Birefringence characterization of biological tissue using optical coherence tomography,” Opt. Lett. 23, 1–3 (1998).
  19. C. R. Jones, “A new calculus for the treatment of optical systems. I. Description and discussion of the calculus,” J. Opt. Soc. Am. 31, 488–493 (1941).
  20. H. Hurwitz and C. R. Jones, “A new calculus for the treatment of optical systems. II. Proof of the three general equivalence theorems,” J. Opt. Soc. Am. 31, 493–499 (1941).
  21. D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, San Diego, Calif., 1990).
  22. J. A. Izatt, M. D. Kulkarni, H. Wang, K. Kobayashi, M. V. Sivak, Jr., D. S. Klinger, J. W. Lewis, and C. E. Randall, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
  23. W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low coherence reflectometry,” IEEE Photon. Technol. Lett. 4, 105–107 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited