## Recursive algorithm for phase retrieval in the fractional Fourier transform domain

Applied Optics, Vol. 37, Issue 29, pp. 6906-6910 (1998)

http://dx.doi.org/10.1364/AO.37.006906

Enhanced HTML Acrobat PDF (98 KB)

### Abstract

We first discuss the discrete fractional Fourier transform and present some essential properties. We then propose a recursive algorithm to implement phase retrieval from two intensities in the fractional Fourier transform domain. This approach can significantly simplify computational manipulations and does not need an initial phase estimate compared with conventional iterative algorithms. Simulation results show that this approach can successfully recover the phase from two intensities.

© 1998 Optical Society of America

**OCIS Codes**

(070.0070) Fourier optics and signal processing : Fourier optics and signal processing

(090.0090) Holography : Holography

(100.5070) Image processing : Phase retrieval

**History**

Original Manuscript: December 1, 1997

Revised Manuscript: April 22, 1998

Published: October 10, 1998

**Citation**

Wen-Xiang Cong, Nan-Xian Chen, and Ben-Yuan Gu, "Recursive algorithm for phase retrieval in the fractional Fourier transform domain," Appl. Opt. **37**, 6906-6910 (1998)

http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-29-6906

Sort: Year | Journal | Reset

### References

- H. A. Ferwerda, “The phase reconstruction problem for wave amplitudes and coherence functions,” in Inverse Source Problem in Optics, H. P. Baltes, ed. (Springer-Verlag, Berlin, 1978), pp. 13–19. [CrossRef]
- R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).
- J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982). [CrossRef] [PubMed]
- G. Z. Yang, B. Z. Dong, B. Y. Gu, J. Y. Zhuang, O. K. Ersoy, “Gerchberg–Saxton and Yang–Gu algorithms for phase retrieval in a nonunitary transform system: a comparison,” Appl. Opt. 33, 209–218 (1994). [CrossRef] [PubMed]
- W. J. Dallas, “Digital computation of image complex amplitude from image and diffraction intensity: an alternative to holography,” Optik (Stuttgart) 44, 45–59 (1975).
- A. M. J. Huiser, P. V. Toorn, H. A. Ferwerda, “On the problem of phase retrieval in electron microscopy from image and diffraction patterns III. The development of an algorithm,” Optik (Stuttgart) 47, 1–8 (1977).
- W. Kim, M. H. Hayes, “Phase retrieval using two Fourier-transform intensities,” J. Opt. Soc. Am. A 7, 441–449 (1990). [CrossRef]
- H. H. Arsenault, K. Chalasinska-Macukow, “A solution to the phase-retrieval problem using the sampling theorem,” Opt. Commun. 47, 380–386 (1983). [CrossRef]
- N. Nakajima, “Phase retrieval from two intensity measurements using the Fourier series expansion,” J. Opt. Soc. Am. A 4, 154–158 (1987). [CrossRef]
- A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform,” J. Opt. Soc. Am. A 10, 2181–2186 (1993). [CrossRef]
- D. Mendlovic, H. M. Ozaktas, “Fractional Fourier transforms and their optical implementation. I,” J. Opt. Soc. Am. A 10, 1875–1881 (1993). [CrossRef]
- H. M. Ozaktas, D. Mendlovic, “Fractional Fourier transforms and their optical implementation. II,” J. Opt. Soc. Am. A 10, 2522–2531 (1993). [CrossRef]
- Z. Zalevsky, R. G. Dorsch, “Gerchberg–Saxton algorithm applied in the fractional Fourier or the Fresnel domain,” Opt. Lett. 21, 842–844 (1996). [CrossRef] [PubMed]
- H. M. Ozaktas, O. Arikan, M. A. Kutay, G. Bozdagi, “Digital computation of the fractional Fourier transform,” IEEE Trans. Signal Process. 44, 2141–2150 (1996). [CrossRef]
- X. G. Xia, “On bandlimited signals with fractional Fourier transform,” IEEE Signal Process. Lett. 3, 72–74 (1996). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.