Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Distortion-invariant filter for nonoverlapping noise

Not Accessible

Your library or personal account may give you access

Abstract

A new heuristic filter based on the optimum filter for disjoint noise developed by Javidi and Wang [J. Opt. Soc. Am. A 11, 2604 (1995)] is presented. In this new filter a number of optimum filters built from single training images are combined linearly by use of the synthetic discriminant function (SDF) approach into a distortion-invariant filter for disjoint noise. Like the traditional SDF approach, this summation technique makes it possible to control the height of the correlation peak easily, for example, if a uniform filter response is needed. The filter is compared with the distortion-invariant version of the optimum filter on images with low contrast and high levels of nonoverlapping clutter. The new filter shows good results, demonstrating that it is, with very simple heuristic methods, possible to improve the performance of distortion-invariant filters for nonoverlapping noise.

© 1998 Optical Society of America

Full Article  |  PDF Article
More Like This
Distortion-invariant composite filter for detecting a target in nonoverlapping scene noise

Bahram Javidi and Jun Wang
Opt. Lett. 20(4) 401-403 (1995)

Synthetic discriminant function filter employing nonlinear space-domain preprocessing on bandpass-filtered images

Lamia S. Jamal-Aldin, Rupert C. D. Young, and Chris R. Chatwin
Appl. Opt. 37(11) 2051-2062 (1998)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.