OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 3 — Jan. 20, 1998
  • pp: 546–550

Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica

David Milam  »View Author Affiliations


Applied Optics, Vol. 37, Issue 3, pp. 546-550 (1998)
http://dx.doi.org/10.1364/AO.37.000546


View Full Text Article

Enhanced HTML    Acrobat PDF (135 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The literature describes more than 30 measurements, at wavelengths between 249 and 1550 nm, of the absolute value of the nonlinear refractive-index coefficient of fused silica. Results of these experiments were assessed and best currently available values were selected for the wavelengths of 351, 527, and 1053 nm. The best values are (3.6 ± 0.64) × 10-16 cm2/W at 351 nm, (3.0 ± 0.35) × 10-16 cm2/W at 527 nm, and (2.74 ± 0.17) × 10-16 cm2/W at 1053 nm.

© 1998 Optical Society of America

OCIS Codes
(120.5710) Instrumentation, measurement, and metrology : Refraction
(160.6030) Materials : Silica
(260.2030) Physical optics : Dispersion
(260.5950) Physical optics : Self-focusing

History
Original Manuscript: May 12, 1997
Revised Manuscript: May 12, 1997
Published: January 20, 1998

Citation
David Milam, "Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica," Appl. Opt. 37, 546-550 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-3-546


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. I. Bespalov, V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” JETP Lett. 3, 307–312 (1966).
  2. PROP2 is the most recent of a series of beam propagation codes that were developed at Livermore National Laboratory. Predecessor codes are reviewed in W. W. Simmons, J. T. Hunt, W. E. Warren, “Light propagation in large systems,” IEEE J. Quantum Electron. QE-17, 1727–1743 (1981). Liberal use was also made of the code OASIS that was originally developed by Rockwell Rocketdyne, Inc. under contract with the U.S. Air Force.
  3. J. A. Paisner, E. M. Campbell, W. J. Hogan, “The National Ignition Facility Project,” UCRL-JC-117379 Rev. 1 (Lawrence Livermore National Laboratory, Livermore, Calif., 1994).
  4. R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, M. Shiek-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996). [CrossRef]
  5. A. J. Taylor, G Rodriguez, T. S. Clement, “Measurement of n2 for KDP and fused silica at 800 nm and 400 nm,” Attachment 1 in Effort in Support of Core Science and Technology Plan for Indirect-Drive Inertial Confinement (ICF) Fusion, LA-UR-96-2689 (Los Alamos National Laboratory, Livermore, Calif., 1996).
  6. T. Shimada, N. A. Kurnit, M. Shiek-Bahae, “Measurements of nonlinear index by a relay-imaged top-hat Z-scan technique,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Gunther, M. R. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 52–60 (1995).
  7. K. S. Kim, R. H. Stolen, W. A. Reed, K. W. Quoi, “Measurement of the nonlinear index of silica-core and dispersion-shifted fibers,” Opt. Lett. 19, 257–259 (1994). [CrossRef] [PubMed]
  8. R. Adair, L. L. Chase, S. A. Payne, “Dispersion of the nonlinear refractive index of optical materials,” Opt. Mat. 1, 185–194 (1992). [CrossRef]
  9. I. N. Ross, W. T. Toner, C. J. Hooker, J. R. M. Barr, I. Correy, “Nonlinear properties of silica and air for picosecond ultraviolet pulses,” J. Mod. Opt. 37, 555–573 (1990). [CrossRef]
  10. T. Kato, Y. Suetsugu, M. Takagi, E. Sasaoka, M. Nishimura, “Measurement of the nonlinear refractive index in optical fiber by the cross-phase-modulation method with depolarized pump light,” Opt. Lett. 20, 988–990 (1995). [CrossRef] [PubMed]
  11. Y. P. Kim, M. H. R. Hutchinson, “Intensity-induced nonlinear effects in UV window materials,” Appl. Phys. B 49, 469–478 (1989). [CrossRef]
  12. M. A. Vasileva, Yu. Vischakas, V. Gulbinas, “Measurements of the nonlinear refractive index of laser active media doped with Nd3+,” Sov. J. Quantum Electron. 15, 656–659 (1985). [CrossRef]
  13. W. T. White, W. L. Smith, D. Milam, “Direct measurement of the nonlinear refractive index coefficient γ at 355 nm in fused silica and in Bk-10 glass,” Opt. Lett. 9, 10–12 (1984). [CrossRef]
  14. W. E. Williams, M. J. Soileau, E. W. Van Stryland, “Simple direct measurements of n2,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Gunther, D. Milam, B. E. Newman, eds., Natl. Bur. Stand. (U.S.) Spec. Publ. 688 (U.S. GAO, Washington, D.C., 1985), pp. 522–531.
  15. R. H. Stolen, C. Lin, “Self-phase modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978). [CrossRef]
  16. G. B. Altshuler, A. I. Barbashev, V. B. Karasev, K. I. Krylov, V. M. Ovchinnkov, S. F. Sharlai, “Direct measurement of the tensor elements of the nonlinear optical susceptibility of optical materials,” Sov. Tech. Phys. Lett. 3, 213–215 (1977).
  17. D. Milam, M. J. Weber, “Measurement of nonlinear refractive-index coefficients using time-resolved interferometry: application to optical materials for high-power neodymium lasers,” J. Appl. Phys. 47, 2497–2501 (1976). [CrossRef]
  18. W. L. Smith, J. H. Bechtel, N. Bloembergen, “Dielectric-breakdown threshold and nonlinear-refractive index measurements with picosecond pulses,” Phys. Rev. B 12, 706–714 (1975). [CrossRef]
  19. R. H. Stolen, A. Ashkin, “Optical Kerr effect in glass optical waveguides,” Appl. Phys. Lett. 22, 294–297 (1973). [CrossRef]
  20. A. Owyoung, R. W. Hellwarth, N. George, “Intensity-induced changes in optical polarizations in glasses,” Phys. Rev. B 5, 628–633 (1972). [CrossRef]
  21. A. P. Veduta, B. P. Kirsanov, “Variation of the refractive index of liquids and glasses in a high intensity field of a ruby laser,” Sov. Phys. JETP 27, 736–738 (1968).
  22. M. D. Perry, Lawrence Livermore Laboratory, Livermore, Calif. (personal communication). Measurements of intensity-dependent frequency broadening, one in a thin window of silica and one in a silica fiber.
  23. L. L. Chase, E. W. Van Stryland, “Nonlinear refractive index-inorganic materials,” in Handbook of Laser Science and Technology, M. J. Weber, ed. (CRC Press, Boca Raton, Fla., 1995), Section 8.1.1.
  24. A. N. Azarenkov, G. B. Altshuler, N. R. Belashenkov, S. A. Kozlov, “Fast nonlinearity of the refractive index of a solid-state dielectric active media,” Sov. J. Quantum Electron. 23, 633–655 (1993). [CrossRef]
  25. W. L. Smith, “Nonlinear refractive index,” in Handbook of Laser Science and Technology, M. J. Weber, ed. (Chemical Rubber Co., Boca Raton, Fla., 1986), Vol. 3, Part 1, Section 1.3.
  26. M. Shiek-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of bound electronic refraction in solids,” J. Quantum. Electron. 27, 1296–1309 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited