OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 30 — Oct. 20, 1998
  • pp: 7096–7099

Photoacoustic determination of the luminescent quantum efficiency of Yb3+ ions in lithium niobate

José A. Muñoz, Jorge O. Tocho, and Fernando Cussó  »View Author Affiliations

Applied Optics, Vol. 37, Issue 30, pp. 7096-7099 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (176 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The luminescent quantum efficiency of Yb3+ ions in lithium niobate (LiNbO3) is obtained by use of a method based on the simultaneous and multiwavelength measurement of photoacoustic and luminescent signals after modulated continuous laser excitation. The experimental results give a high value for the luminescence quantum efficiency (Φ = 0.90 ± 0.05), coincident with the predictions by the comparison between experimental and estimated radiative lifetimes.

© 1998 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(160.2540) Materials : Fluorescent and luminescent materials
(160.3130) Materials : Integrated optics materials
(160.3730) Materials : Lithium niobate
(160.5690) Materials : Rare-earth-doped materials
(300.6430) Spectroscopy : Spectroscopy, photothermal

Original Manuscript: March 6, 1998
Revised Manuscript: June 15, 1998
Published: October 20, 1998

José A. Muñoz, Jorge O. Tocho, and Fernando Cussó, "Photoacoustic determination of the luminescent quantum efficiency of Yb3+ ions in lithium niobate," Appl. Opt. 37, 7096-7099 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Lallier, J. P. Pocholle, M. Papuchon, C. Grezes-Besset, E. Pelletier, M. P. De Micheli, M. J. Li, Q. He, D. B. Ostrowsky, “Laser oscillation of single-mode channel waveguide in Nd:MgO:LiNbO3,” Electron. Lett. 25, 1491–1492 (1989). [CrossRef]
  2. S. J. Field, D. C. Hanna, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, L. Zhang, “Ion-implanted Nd:MgO:LiNbO3 planar waveguide laser,” Opt. Lett. 16, 481–483 (1991). [CrossRef] [PubMed]
  3. R. Brinkmann, W. Sohler, H. Suche, “Continuous-wave erbium-diffused LiNbO3 waveguide laser,” Electron. Lett. 27, 415–417 (1991). [CrossRef]
  4. J. Amin, M. Hempstead, J. Román, J. S. Wilkinson, “Tunable coupled-cavity waveguide laser at room temperature in Nd-diffused Ti:LiNbO3,” Opt. Lett. 19, 1541–1543 (1994). [CrossRef] [PubMed]
  5. I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, S. Westenhofer, “Ti:Er:LiNbO3 waveguide laser of optimized efficiency,” J. Quantum Electron. 32, 1695–1706 (1996). [CrossRef]
  6. J. K. Jones, J. P. de Sandro, M. Hempstead, D. P. Shepherd, A. C. Large, A. C. Tropper, J. S. Wilkinson, “Channel waveguide laser at 1 μm in Yb-indiffused LiNbO3,” Opt. Lett. 20, 1477–1479 (1995). [CrossRef] [PubMed]
  7. D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134, A299–A306 (1964). [CrossRef]
  8. W. J. Miniscalco, R. S. Quimby, “General procedure for the analysis of Er3+ cross sections,” Opt. Lett. 16, 258–260 (1991). [CrossRef] [PubMed]
  9. E. Montoya, L. E. Bausá, “Thermal dependence of the optical properties of Yb3+ ions in LiNbO3 crystals,” presented at the Fourth International School on Excited State of Transition Elements, Duzsniki Zdroj, Poland, 6–13 September 1997.
  10. J. C. Murphy, L. C. Aamodt, “Photoacoustic spectroscopy of luminescent solids: ruby,” J. Appl. Phys. 48, 3502–3509 (1977). [CrossRef]
  11. L. D. Merkle, R. C. Powell, “Photoacoustic spectroscopy investigation of radiationless transitions in Eu2+ ions in KCl crystals,” Phys. Lett. 46, 303–306 (1977).
  12. R. S. Quimby, W. N. Yen, “Photoacoustic measurement of absolute quantum efficiencies in solids,” Opt. Lett. 3, 181–183 (1978). [CrossRef] [PubMed]
  13. J. Etxebarría, J. Fernández, “Photoacoustic spectra of transparent solids doped with localised absorbing centres,” J. Phys. C 16, 3803–3810 (1983). [CrossRef]
  14. A. Mendioroz, R. Balda, J. Fernández, F. Auzel, “Quantum efficiency of 1.5 μm emission of Er3+ in ZBLAN and BIGaZYT fluoride glasses and in silica glass obtained by photoacoustic spectroscopy,” J. Phys. (Paris) 4, C7-397–C7-400 (1994).
  15. E. Rodriguez, J. O. Tocho, F. Cussó, “Simultaneous multiple-wavelength photoacoustic and luminescence experiments: a method for fluorescent-quantum-efficiency determination,” Phys. Rev. B 47, 14049–14053 (1993). [CrossRef]
  16. E. Rodriguez, L. Núñez, J. O. Tocho, F. Cussó, “Quantum efficiency measurement in solids by photoacoustic and luminescence experiments,” J. Lumin. 58, 353–355 (1994). [CrossRef]
  17. S. E. Braslavsky, K. Heihoff, “Photothermal methods,” in Handbook of Organic Photochemistry, J. C. Scaiano, ed. (CRC, Boca Raton, Fla., 1989), Chap. 14, pp. 327–355.
  18. G. Lifante, F. Cussó, F. Jaque, J. A. Sanz-García, A. Monteil, B. Varrel, G. Boulon, J. A. García-Solé, “Site-selective spectroscopy of Nd3+ in LiNbO3:Nd and LiNbO3:Nd,Mg crystals,” Chem. Phys. Lett. 176, 482–488 (1991). [CrossRef]
  19. J. A. García-Solé, B. Macalik, L. E. Bausá, F. Cussó, E. Camarillo, A. Lorenzo, L. Núñez, F. Jaque, A. Monteil, G. Boulon, J. E. Muñoz-Santiuste, I. Vergara, “Optical detection of ion impurity sites in doped LiNbO3,” J. Electrochem. Soc. 140, 2010–2015 (1993). [CrossRef]
  20. L. Núñez, F. Cussó, “Polarized absorption and energy levels of LiNbO3:Tm and LiNbO3(MgO):Tm,” J. Phys.: Condens. Matter 5, 5301–5312 (1993). [CrossRef]
  21. D. M. Gill, J. C. Wright, L. McCaughan, “Site characterization of rare-earth-doped LiNbO3 using total site selective spectroscopy,” Appl. Phys. Lett. 64, 2483–2485 (1994). [CrossRef]
  22. D. M. Gill, L. McCaughan, J. C. Wright, “Spectroscopic site determinations in erbium-doped lithium niobate,” Phys. Rev. B 53, 2334–2344 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited