OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 31 — Nov. 1, 1998
  • pp: 7334–7341

Ellipsometry on Sputter-Deposited Tin Oxide Films: Optical Constants Versus Stoichiometry, Hydrogen Content, and Amount of Electrochemically Intercalated Lithium

Jan Isidorsson, Claes G. Granqvist, Klaus von Rottkay, and Michael Rubin  »View Author Affiliations


Applied Optics, Vol. 37, Issue 31, pp. 7334-7341 (1998)
http://dx.doi.org/10.1364/AO.37.007334


View Full Text Article

Acrobat PDF (201 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Tin oxide thin films were deposited by reactive radio-frequency magnetron sputtering onto In2O3:Sn-coated and bare glass substrates. Optical constants in the 3002500-nm wavelength range were determined by a combination of variable-angle spectroscopic ellipsometry and spectrophotometric transmittance measurements. Surface roughness was modeled from optical measurements and compared with atomic-force microscopy. The two techniques gave consistent results. The fit between experimental optical data and model results could be significantly improved when it was assumed that the refractive index of the Sn oxide varied across the film thickness. Varying the oxygen partial pressure during deposition made it possible to obtain films whose complex refractive index changed at the transition from SnO to SnO2. An addition of hydrogen gas during sputtering led to lower optical constants in the full spectral range in connection with a blueshift of the bandgap. Electrochemical intercalation of lithium ions into the Sn oxide films raised their refractive index and enhanced their refractive-index gradient.

© 1998 Optical Society of America

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(310.0310) Thin films : Thin films

Citation
Jan Isidorsson, Claes G. Granqvist, Klaus von Rottkay, and Michael Rubin, "Ellipsometry on Sputter-Deposited Tin Oxide Films: Optical Constants Versus Stoichiometry, Hydrogen Content, and Amount of Electrochemically Intercalated Lithium," Appl. Opt. 37, 7334-7341 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-31-7334


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. B. Stjerna, E. Olsson, and C. G. Granqvist, “Optical and electrical properties of rf sputtered tin oxide films doped with oxygen vacancies, F, Sb, or Mo,” J. Appl. Phys. 76, 37973817 (1994).
  2. I. Hamberg, J. S. E. M. Svensson, T. S. Eriksson, C. G. Granqvist, P. Arrenius, and F. Norin, “Radiative cooling and frost formation on surfaces with different thermal emittance: theoretical analysis and practical experience,” Appl. Opt. 26, 21312136 (1987).
  3. C. G. Granqvist, Handbook of Inorganic Electrochromic Oxides (Elsevier, Amsterdam, 1995).
  4. V. Lantto, “Semiconductor gas sensors based on SnO2 thick films,” in Gas Sensors, G. Sberveglieri, ed. (Kluwer, Dordrecht, The Netherlands, 1992), pp. 117167.
  5. W. Göpel and K. D. Schierbaum, “SnO2 sensors: current status and future prospects,” Sensors Actuators B 2627, 112 (1995).
  6. T. Brousse, R. Retoux, U. Herterich, and D. M. Schleich, “Thin-film crystalline SnO2-lithium electrodes,” J. Electrochem. Soc. 145, 14 (1998).
  7. I. A. Courtney and J. R. Dahn, “Electrochemical and in-situ x-ray diffraction studies of the reaction of lithium with tin oxide composites,” J. Electrochem. Soc. 144, 20452052 (1997).
  8. Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, and T. Miyasaka, “Tin-based amorphous oxide: a high-capacity lithium-ion-storage material,” Science 276, 13951397 (1997).
  9. P. Olivi, E. C. Pereira, E. Longo, J. A. Varella, and L. O. de S. Bulhoes, “Preparation and characterization of a dip-coated SnO2 film for transparent electrodes for transmissive electrochromic devices,” J. Electrochem. Soc. 140, L81L82 (1993).
  10. B. Orel, U. Lavrencic-Stangar, and K. Kalcher, “Electrochemical and structural properties of SnO2 and SnO2:Sb transparent electrodes with mixed electronically conductive and ion-storage characteristics,” J. Electrochem. Soc. 141, L127L130 (1994).
  11. U. Opara Krasovec, B. Orel, S. Hocevar, and I. Musevic, “Electrochemical and spectroelectrochemical properties of SnO2 and SnO2/Mo transparent electrodes with high ion storage capacity,” J. Electrochem. Soc. 144, 33983409 (1997).
  12. J. Isidorsson and C. G. Granqvist, “Electrochromism of Li-intercalated Sn oxide films made by sputtering,” Solar Energy Mater. Solar Cells 44, 375381 (1996).
  13. J. Isidorsson, C. G. Granqvist, L. Häggström, and E. Nordström, “Electrochromism in lithiated Sn oxide: Mössbauer spectroscopy data on valence state changes,” J. Appl. Phys. 80, 23672371 (1996).
  14. K. von Rottkay and M. Rubin, “Optical indices of pyrolitic tin-oxide glass,” in Polycrystalline Thin Films: Structure, Texture, Properties and Applications II, H. J. Frost, M. A. Parker, C. A. Ross, and E. A. Holm, eds., Mater. Res. Soc. Symp. Proc. 426, 449454 (1996).
  15. F. K. Urban III, P. Ruthakowski Athey, and M. D. Islam, “Modeling of surface roughness in variable-angle spectroscopic ellipsometry using numerical processing of atomic force microscopy images,” Thin Solid Films 253, 326332 (1994).
  16. P. Ruzakowski Athey, F. K. Urban III, and P. H. Holloway, “Use of multiple analytical techniques to confirm improved optical modelling of SnO2:F films by atomic force microscopy and spectroscopic ellipsometry,” J. Vac. Sci. Technol. B 14, 34363444 (1996).
  17. A. Roos, “Optical properties of pyrolytic tin oxide on aluminum,” Thin Solid Films 203, 4148 (1991).
  18. F. Caccavale, R. Coppola, A. Menelle, M. Montecchi, P. Polato, and G. Principi, “Characterization of SnOx on architectural glass by neutron reflectometry, SIMS, CEMS and spectrophotometry,” J. Non-Cryst. Solids 218, 291295 (1997).
  19. R. J. Martin-Palma and J. M. Martinez-Duart, “Accurate determination of the optical constants of sputter-deposited Ag and SnO2 for low emissivity coatings,” J. Vac. Sci. Technol. A 16, 409412 (1998).
  20. G. Lévêque and Y. Villachon-Renard, “Determination of optical constants of thin film from reflectance spectra,” Appl. Opt. 29, 32073212 (1990).
  21. C. Herzinger and B. Johs, “The parametric semiconductor model,” in Guide to Using WVASE32 (Woollam, Lincoln, Neb., 1996), pp. 347349.
  22. C. C. Kim, J. W. Garland, H. Abad, and P. M. Raccah, “Modeling the optical dielectric function of semiconductors: extension of the critical-point parabolic-band approximation,” Phys. Rev. B 45, 11,74911, 767 (1992).
  23. X.-F. He, “Interband critical-band line shapes in confined semiconductor structures with arbitrary dimensionality: inhomogeneous broadening,” J. Opt. Soc. Am. B 14, 1720 (1997).
  24. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, UK, 1989), pp. 523528.
  25. I. Hamberg and C. G. Granqvist, “Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows,” J. Appl. Phys. 60, R123R160 (1986).
  26. K. von Rottkay, M. Rubin, and N. Ozer, “Optical indices of tin-doped indium oxide and tungsten oxide electrochromic coatings,” in Thin Films for Photovoltaic and Related Device Applications, D. Ginley, A. Catalano, H. W. Schock, C. Eberspacher, T. M. Peterson, and T. Wada, eds., Mater. Res. Soc. Symp. Proc. 403, 551556 (1996).
  27. J. Szczyrbowski, K. Schmalzbauer, and H. Hoffman, “Optical properties of rough thin films,” Thin Solid Films 130, 5773 (1985).
  28. D. E. Aspnes and J. B. Theeten, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 32923302 (1979).
  29. C. Pickering, R. Greef, and A. M. Hodge, “Characterisation of rough silicon surfaces using spectroscopic ellipsometry, reflectance, scanning electron microscopy and scattering measurements,” Mater. Sci. Eng. B 5, 295299 (1990).
  30. D. Rönnow, S. K. Andersson, and G. A. Niklasson, “Surface roughness effects in ellipsometry: comparison of truncated sphere and effective medium models,” Opt. Mater. 4, 815821 (1995).
  31. D. E. Aspnes, “Microstructural information from optical properties in semiconductor technology,” in Optical Characterization Techniques for Semiconductor Technology, D. E. Aspnes, S. So, and R. F. Potter, eds., Proc. SPIE 276, 188195 (1981).
  32. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen,” Ann. Phys. (Leipzig) 24, 636664 (1935).
  33. A. Azens, L. Kullman, G. Vaivars, H. Nordborg, and C. G. Granqvist, “Sputter-deposited nickel oxide for electrochromic applications,” Solid State Ionics (to be published).
  34. F. Wooten, Optical Properties of Solids (Academic, New York, 1981).
  35. T. S. Moss, Optical Properties of Semiconductors (Butterworth, London, 1959).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited