OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 34 — Dec. 1, 1998
  • pp: 7940–7946

Demodulation scheme for fiber Bragg grating sensors based on active control of the spectral response of a wavelength division multiplexer

Francisco M. Araújo, Luís A. Ferreira, José L. Santos, and Faramarz Farahi  »View Author Affiliations

Applied Optics, Vol. 37, Issue 34, pp. 7940-7946 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (134 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a closed-loop technique for measuring wavelength shifts associated with fiber Bragg gratings by using a fused biconical wavelength division multiplexer (WDM). The spectral response of the WDM is actively tuned by stretching of the coupling region to maintain a fixed coupling ratio at the reflected Bragg wavelength. The closed-loop operation allows sensitivities usually associated with a highly selective WDM to be obtained without compromising the measurement range. A simple theoretical model is presented together with experimental results for temperature and strain measurements.

© 1998 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2370) Fiber optics and optical communications : Fiber optics sensors

Original Manuscript: June 9, 1998
Revised Manuscript: August 11, 1998
Published: December 1, 1998

Francisco M. Araújo, Luís A. Ferreira, José L. Santos, and Faramarz Farahi, "Demodulation scheme for fiber Bragg grating sensors based on active control of the spectral response of a wavelength division multiplexer," Appl. Opt. 37, 7940-7946 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Udd, C. M. Laurence, D. V. Nelson, “Development of a three-axis strain and temperature fiber optic grating sensor,” in Smart Structures and Materials 1997: Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE3042, 229–236 (1997). [CrossRef]
  2. R. M. Measures, A. T. Alavie, R. Maaskant, M. Ohn, S. Karr, S. Huang, “A structurally integrated Bragg grating laser sensing system for a carbon fiber prestressed concrete highway bridge,” Smart Mater. Struct. 4, 20–30 (1995). [CrossRef]
  3. H. Sing, J. S. Sirkis, “Simultaneously measuring temperature and strain using optical fiber microcavities,” J. Lightwave Technol. 15, 647–653 (1997). [CrossRef]
  4. K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997). [CrossRef]
  5. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997). [CrossRef]
  6. S. M. Melle, K. Liu, R. M. Measures, “Practical fiber-optic Bragg grating strain gauge system,” Appl. Opt. 32, 3601–3609 (1993). [CrossRef] [PubMed]
  7. M. A. Davis, A. D. Kersey, “All-fiber Bragg grating strain-sensor demodulation technique using a wavelength division coupler,” Electron. Lett. 30, 75–77 (1994). [CrossRef]
  8. Q. Zhang, D. A. Brown, H. Kung, J. E. Townsend, M. Chen, L. J. Reinhart, T. F. Morse, “Use of highly overcoupled couplers to detect shifts in Bragg wavelength,” Electron. Lett. 31, 480–482 (1995). [CrossRef]
  9. A. B. Lobo Ribeiro, L. A. Ferreira, M. Tsvetkov, J. L. Santos, “All-fiber interrogation technique for fiber Bragg sensors using a biconical fiber filter,” Electron. Lett. 32, 382–383 (1996). [CrossRef]
  10. L. A. Ferreira, J. L. Santos, “Demodulation scheme for fiber Bragg sensors based on source spectral characteristics,” Pure Appl. Opt. 5, 257–261 (1996). [CrossRef]
  11. A. D. Kersey, M. A. Davis, T. Tsai, “Fiber optic Bragg grating strain sensor with direct reflectometric interrogation,” in Proceedings of the Eleventh International Conference on Optical Fiber Sensors, Y. Ohtsuka, T. Yoshino, eds. (Japan Society of Applied Physics, Sapporo, Japan, 1996), pp. 634–637.
  12. T. Coroy, R. M. Measures, “Active wavelength demodulation of a Bragg grating fiber optic strain sensor using a quantum well electroabsorption filtering detector,” Electron. Lett. 32, 1811–1812 (1996). [CrossRef]
  13. A. D. Kersey, T. A. Berkoff, W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry–Perot wavelength filter,” Opt. Lett. 18, 1370–1372 (1993). [CrossRef]
  14. M. G. Xu, H. Geiger, J. L. Archambault, L. Reekie, J. P. Dakin, “Novel interrogating system for fiber Bragg grating sensors using an acousto-optic tunable filter,” Electron. Lett. 29, 1510–1511 (1993). [CrossRef]
  15. D. A. Jackson, A. B. Lobo Ribeiro, L. Reekie, J. L. Archambault, “Simple multiplexing scheme for a fiber-optic grating sensor network,” Opt. Lett. 18, 1192–1194 (1993). [CrossRef] [PubMed]
  16. M. J. F. Digonnet, H. J. Shaw, “Analysis of a tunable single mode optical fiber coupler,” J. Quantum Electron. QE-18, 746–754 (1982). [CrossRef]
  17. H. Berthou, L. Falco, “Switching characteristics of a piezoelectrical actuated evanescent-wave directional coupler,” Electron. Lett. 23, 469–471 (1987). [CrossRef]
  18. J. Bures, S. Lacroix, J. Lapierre, “Analyse d’un coupler bidirectionnel à fibre optiques monomodes fusionnées,” Appl. Opt. 22, 1918–1922 (1983). [CrossRef]
  19. B. S. Kawasaki, M. Kawachi, K. O. Hill, D. C. Johnson, “A single-mode-fiber coupler with a variable coupling ratio,” J. Lightwave Technol. 1, 176–178 (1983). [CrossRef]
  20. T. A. Birks, “Twist-induced tuning in tapered fiber couplers,” Appl. Opt. 28, 4226–4233 (1989). [CrossRef] [PubMed]
  21. S. Celashi, J. T. De Jesus, F. M. Smolka, “All-fiber tunable beam splitter,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1988 Technical Digest Series (Optical Society of America, Washington, D.C., 1988), pp. 358–359.
  22. A. Booysen, S. J. Spammer, P. L. Swart, “Ratiometric fiber optic sensor utilizing a fused biconically tapered coupler,” in Fiber Optic and Laser Sensors IX, R. P. DePaula, E. Udd, eds., Proc. SPIE1584, 273–279 (1991). [CrossRef]
  23. R. G. Lamont, D. C. Johnson, K. O. Hill, “Power transfer in fused biconical-taper single-mode fiber couplers: dependence on external refractive index,” Appl. Opt. 24, 327–332 (1995). [CrossRef]
  24. M. B. J. Diemeer, W. J. De Vries, K. W. Benoist, “Fused coupler switch using a thermo-optic cladding,” Electron. Lett. 24, 457–458 (1988). [CrossRef]
  25. F. P. Paine, C. D. Hussey, M. S. Yataki, “Modeling fused single-mode-fiber couplers,” Electron. Lett. 21, 461–462 (1985).
  26. R. P. Kenny, T. A. Birks, K. P. Oakley, “Control of optical fiber taper shape,” Electron. Lett. 27, 1654–1656 (1991). [CrossRef]
  27. J. D. Love, W. M. Henry, “Quantifying loss minimization in single-mode fiber tapers,” Electron. Lett. 22, 912–914 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited